Python答题卡识别并给出分数的实现代码


Posted in Python onJune 22, 2021

  哈喽大家好,这里是滑稽研究所。看过我们图像处理系列的朋友,应该知道识别答题卡那期文章。其中利用opencv框架,完美的实现了答题卡填涂区域的识别。在后台有小伙伴想要我完善一下判断选项对错并打分的功能,本期我们就来实现一下。
  那么我们来复习一下往期的代码原理。我们需要对图片素材进行灰度化处理、透视变换、轮廓检测、腐蚀膨胀处理、区域分割、边框计算、区域计算。实际上我们是通过像素面积的过滤、填涂区域优化和获取选项坐标来完成答题卡的识别的。
素材:

Python答题卡识别并给出分数的实现代码

  那么在获取到答题卡的填涂区域之后就好办了。我们首先分隔答题卡,去除干扰项,然后把不同的区域打上标签。我们的答题卡是自上而下排序的。那么我们获取到的填涂项的x坐标即横坐标就派上了用场。选项A~E一定是占据了五个不同的区域。我们已经为不同区域打上了标签。剩下的就是交给我们的if判断语句了。这时我们已经为填涂项赋上了实际的意义。即从像素坐标转换成了具有实际意义的选项。
  那y坐标就没有用了吗?非也。经过上面的处理我们只是得到了填涂区域对应的选项。但是我们还没有进行排序。大家知道无序的选项是没有意义的。而刚刚我们说了该答题卡的题号顺序是自上而下的。因为我们遍历选项时,是同时得到x、y坐标的,因此我们可以保证得到的坐标是配对的。
  其中横纵坐标分别填入两个list中,然后使用zip方法合并list。这时我们再按照每个list的第二个元素也就是纵坐标进行由小到大的排序,就可以得到正确的顺序。
  这时我们才真正获取到了需要的数据。即考生填涂的选项顺序,我们再新建一个list放正确的答案,与考生的答案进行对比,经计算得出考生的正确率,并给出分数。
  好,思路清晰,上代码!

import cv2
import numpy as np

path = './test_01.png'
img = cv2.imread(path)

imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray,(3,3),1)
imgCanny = cv2.Canny(imgBlur,100,120)

cv2.imshow("O", imgCanny)

imgContour = img.copy()

cnts = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
for cnt in cnts:
    area = cv2.contourArea(cnt)
    # 这个输出各个轮廓的面积
    #print(area)
#
if area >= 500:
    cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3)
    peri = cv2.arcLength(cnt, True)
    # 找出轮廓的突变值
    approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
    # approx找到的是一个轮廓有几个突变值,有几个角就会有几个突变值
    # 返回的是一个list,输出他的长度,就可以知道到底有几个角
    #print(approx)
    a1,a2,a3,a4 = list(approx[0][0]),list(approx[1][0]),list(approx[2][0]),list(approx[3][0])

#cv2.imshow("Canny Image",imgContour)

mat1 = np.array([a1,a2,a3,a4],dtype=np.float32)

#透视变换
#计算矩形宽高
width = 402#int(((a4[0]-a1[0])+(a3[0]-a2[0]))/2)
height = 518#int(((a2[1]-a1[1])+(a3[1]-a4[1]))/2)

#计算还原后的坐标
new_a1 = [0,0]
new_a2 = [0,height]
new_a3 = [width,height]
new_a4 = [width,0]

mat2 = np.array([new_a1,new_a2,new_a3,new_a4],dtype=np.float32)
#计算变换矩阵
mat3 = cv2.getPerspectiveTransform(mat1,mat2)

#进行透视变换
res = cv2.warpPerspective(imgCanny,mat3,(width,height))
res1 = cv2.warpPerspective(img,mat3,(width,height))

imgxx = cv2.cvtColor(res1,cv2.COLOR_BGR2GRAY)
binary = cv2.threshold(imgxx,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU )[1]
#变换完成
#cv2.imshow("Output",res1)

cntss = cv2.findContours(res, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
for cnt1 in cntss:
    area1 = cv2.contourArea(cnt1)
    # 这个输出各个轮廓的面积
    #print(area)
#
    if area1 >= 1500 and area1<=1700:
        #把圆的轮廓画成黑色
        cv2.drawContours(binary, cnt1, -1, (0, 0, 0), 10)

        kernel = np.ones((5, 5), np.uint8)
        imgDialation = cv2.dilate(binary, kernel, iterations=1)

cv2.imshow("Out", imgDialation)

cntsss = cv2.findContours(imgDialation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]

l1 = []
l2 = []
l3 = ['B','E','A','D','B']

for cnt2 in cntsss:
    area2 = cv2.contourArea(cnt2)
            #print(area)

    if area2 <= 1200 and 800<=area2:
                #cv2.drawContours(res1, cnt, -1, (0, 255, 0), 5)
                #轮廓长
        peri = cv2.arcLength(cnt2, True)
                # 找出轮廓的突变值
        approx1 = cv2.approxPolyDP(cnt2, 0.02 * peri, True)

        x, y, w, h = cv2.boundingRect(approx1)
                #外接矩形
        #print(x+w//2,y+h//2)

        m = x+w//2
        n = y+h//2
        l1.append(m)
        l2.append(n)
        #拼接两个一维列表,使x,y坐标配对。
        mix1 = list(zip(l1,l2))
        #按列表第二个元素升序,即按y值由小到大排列。
        #这是我们得到的答案为正确顺序。
        mix1.sort(key=lambda x: x[1])

        if 400>x>80 and 50<y<350:
            cv2.rectangle(res1, (x, y), (x + w, y + h), (0, 0, 255), 2)
            #圆心
            # (图像,x.y位置,半径,颜色,轮廓粗细)
            cv2.circle(res1, (x+w//2,y+h//2), 1, (255, 0, 0), 5)

l4 = []
for i in mix1:
    if 75 < i[0] < 130:
        print("A")
        l4.append('A')
    elif 130 < i[0] < 185:
        print("B")
        l4.append('B')
    elif 185 < i[0] < 240:
        print("C")
        l4.append('C')
    elif 240 < i[0] < 295:
        print("D")
        l4.append('D')
    elif 295 < i[0] < 350:
        print("E")
        l4.append('E')

print('正确答案:',l3)
print('考生答案',l4)


h = 0
for i in range(0, len(l3)):
    if l3[i] == l4[i]:
        h=h+1
print('得分:',str(h/5*100)+'分')

cv2.imshow("cc Image",res1)

cv2.imshow("dd Image",binary)

cv2.waitKey(0)

运行结果:

Python答题卡识别并给出分数的实现代码
Python答题卡识别并给出分数的实现代码

  以上为两个图片素材的运行结果,我们只放出其中一部分。剩余的素材大家自行实验。
  可以看到,程序成功的识别了考生填涂的答题卡,并给出了考生答案、正答案和考生最后的得分。
  综上功能实现,任务完成。大家学会了吗?

以上就是Python识别答题卡并给出分数的详细内容,更多关于Python识别答题卡的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python模块学习 filecmp 文件比较
Aug 27 Python
Python入门及进阶笔记 Python 内置函数小结
Aug 09 Python
python批量提交沙箱问题实例
Oct 08 Python
Python中装饰器高级用法详解
Dec 25 Python
python分治法求二维数组局部峰值方法
Apr 03 Python
python Pandas 读取txt表格的实例
Apr 29 Python
Python 创建新文件时避免覆盖已有的同名文件的解决方法
Nov 16 Python
在Pycharm中对代码进行注释和缩进的方法详解
Jan 20 Python
python主线程与子线程的结束顺序实例解析
Dec 17 Python
Python中实现输入超时及如何通过变量获取变量名
Jan 18 Python
python中提高pip install速度
Feb 14 Python
Python绘制组合图的示例
Sep 18 Python
Python 中的单分派泛函数你真的了解吗
Jun 22 #Python
Python实现DBSCAN聚类算法并样例测试
python中sqllite插入numpy数组到数据库的实现方法
Jun 21 #Python
利用Python第三方库实现预测NBA比赛结果
Django实现drf搜索过滤和排序过滤
python生成可执行exe控制Microsip自动填写号码并拨打功能
详解Python自动化之文件自动化处理
Jun 21 #Python
You might like
一个SQL管理员的web接口
2006/10/09 PHP
thinkphp中ajax与php响应过程详解
2014/12/08 PHP
PHP模糊查询的实现方法(推荐)
2016/09/06 PHP
javascript 简单高效判断数据类型 系列函数 By shawl.qiu
2007/03/06 Javascript
jQuery EasyUI中对表格进行编辑的实现代码
2010/06/10 Javascript
javascript实现上传图片并预览的效果实现代码
2011/04/11 Javascript
网页加载时页面显示进度条加载完成之后显示网页内容
2012/12/23 Javascript
在JavaScript中实现类的方式探讨
2013/08/28 Javascript
jquery live()调用不存在的解决方法
2014/02/26 Javascript
JavaScript中对象属性的添加和删除示例
2014/05/12 Javascript
JavaScript DOM节点添加示例
2014/07/16 Javascript
原生javascript实现拖动元素示例代码
2014/09/01 Javascript
基于JS代码实现当鼠标悬停表格上显示这一格的全部内容
2016/06/12 Javascript
Google Maps基础及实例解析
2016/08/06 Javascript
详解Angular2中Input和Output用法及示例
2017/05/21 Javascript
JS基于对象的特性实现去除数组中重复项功能详解
2017/11/17 Javascript
如何更好的编写js async函数
2018/05/13 Javascript
点击按钮弹出模态框的一系列操作代码实例
2019/03/29 Javascript
javascript实现5秒倒计时并跳转功能
2019/06/20 Javascript
JavaScript实现指定数量的并发限制的示例代码
2020/03/10 Javascript
vue实现登录、注册、退出、跳转等功能
2020/12/23 Vue.js
[02:30]DOTA2放量测试专访海涛:呼吁保护新手玩家
2013/08/26 DOTA
Python基于生成器迭代实现的八皇后问题示例
2018/05/23 Python
python输出pdf文档的实例
2020/02/13 Python
python元组拆包实现方法
2021/02/28 Python
HTML5 Web Workers之网站也能多线程的实现
2013/04/24 HTML / CSS
音乐器材管理制度
2014/01/31 职场文书
医学生毕业自我鉴定
2014/03/26 职场文书
销售目标责任书
2014/07/23 职场文书
竞选学委演讲稿
2014/09/13 职场文书
2015年中秋节主持词
2015/07/30 职场文书
生日寿星公答谢词
2015/09/29 职场文书
小学体育队列队形教学反思
2016/02/16 职场文书
《猴王出世》教学反思
2016/02/23 职场文书
详解MySQL主从复制及读写分离
2021/05/07 MySQL
企业版Windows 11有哪些新功能? Win11适用于企业的功能介绍
2021/11/21 数码科技