最小二乘法及其python实现详解


Posted in Python onFebruary 24, 2020

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

那什么是最小二乘法呢?别着急,我们先从几个简单的概念说起。

假设我们现在有一系列的数据点 最小二乘法及其python实现详解 ,那么由我们给出的拟合函数h(x)得到的估计量就是 最小二乘法及其python实现详解 ,那么怎么评估我们给出的拟合函数与实际待求解的函数的拟合程度比较高呢?这里我们先定义一个概念:残差 最小二乘法及其python实现详解 , 我们估计拟合程度都是在残差的基础上进行的。下面再介绍三种范数:

• ∞-范数:残差绝对值的最大值 最小二乘法及其python实现详解 ,即所有数据点中残差距离的最大值

• 1-范数:绝对残差和最小二乘法及其python实现详解 ,即所有数据点残差距离之和

• 2-范数:残差平方和 最小二乘法及其python实现详解

前两种范数是最容易想到,最自然的,但是不利于进行微分运算,在数据量很大的情况下计算量太大,不具有可操作性。因此一般使用的是2-范数。

说了这么多,那范数和拟合有什么关系呢?拟合程度,用通俗的话来讲,就是我们的拟合函数h(x)与待求解的函数y之间的相似性。那么2-范数越小,自然相似性就比较高了。

由此,我们可以写出最小二乘法的定义了:

对于给定的数据 最小二乘法及其python实现详解 ,在取定的假设空间H中,求解h(x)∈H,使得残差 最小二乘法及其python实现详解 的2-范数最小,即

最小二乘法及其python实现详解

从几何上讲,就是寻找与给定点 最小二乘法及其python实现详解 距离平方和最小的曲线y=h(x)。h(x)称为拟合函数或者最小二乘解,求解拟合函数h(x)的方法称为曲线拟合的最小二乘法。

那么这里的h(x)到底应该长什么样呢?一般情况下,这是一条多项式曲线:

最小二乘法及其python实现详解

这里h(x,w)是一个n次多项式,w是其参数。

也就是说,最小二乘法就是要找到这样一组 最小二乘法及其python实现详解 ,使得 最小二乘法及其python实现详解 最小。

那么如何找到这样的w,使得其拟合函数h(x)与目标函数y具有最高拟合程度呢?即最小二乘法如何求解呢,这才是关键啊。

假设我们的拟合函数是一个线性函数,即:

最小二乘法及其python实现详解

(当然,也可以是二次函数,或者更高维的函数,这里仅仅是作为求解范例,所以采用了最简单的线性函数)那么我们的目标就是找到这样的w,

最小二乘法及其python实现详解

这里令 最小二乘法及其python实现详解 为样本 最小二乘法及其python实现详解 的平方损失函数

这里的Q(w)即为我们要进行最优化的风险函数。

学过微积分的同学应该比较清楚,这是一个典型的求解极值的问题,只需要分别对 18 求偏导数,然后令偏导数为0,即可求解出极值点,即:

最小二乘法及其python实现详解

接下来只需要求解这个方程组即可解出w_i 的值

============ 分割分割 =============

上面我们讲解了什么是最小二乘法,以及如何求解最小二乘解,下面我们将通过Python来实现最小二乘法。

这里我们把目标函数选为y=sin(2πx),叠加上一个正态分布作为噪音干扰,然后使用多项式分布去拟合它。

代码:

# _*_ coding: utf-8 _*_
# 作者: yhao
# 博客: http://blog.csdn.net/yhao2014
# 邮箱: yanhao07@sina.com
 
import numpy as np # 引入numpy
import scipy as sp
import pylab as pl
from scipy.optimize import leastsq # 引入最小二乘函数
 
n = 9 # 多项式次数
 
 
# 目标函数
def real_func(x):
 return np.sin(2 * np.pi * x)
 
 
# 多项式函数
def fit_func(p, x):
 f = np.poly1d(p)
 return f(x)
 
 
# 残差函数
def residuals_func(p, y, x):
 ret = fit_func(p, x) - y
 return ret
 
 
x = np.linspace(0, 1, 9) # 随机选择9个点作为x
x_points = np.linspace(0, 1, 1000) # 画图时需要的连续点
 
y0 = real_func(x) # 目标函数
y1 = [np.random.normal(0, 0.1) + y for y in y0] # 添加正太分布噪声后的函数
 
p_init = np.random.randn(n) # 随机初始化多项式参数
 
plsq = leastsq(residuals_func, p_init, args=(y1, x))
 
print 'Fitting Parameters: ', plsq[0] # 输出拟合参数
 
pl.plot(x_points, real_func(x_points), label='real')
pl.plot(x_points, fit_func(plsq[0], x_points), label='fitted curve')
pl.plot(x, y1, 'bo', label='with noise')
pl.legend()
pl.show()

输出拟合参数:

最小二乘法及其python实现详解

图像如下:

最小二乘法及其python实现详解

从图像上看,很明显我们的拟合函数过拟合了,下面我们尝试在风险函数的基础上加上正则化项,来降低过拟合的现象:

最小二乘法及其python实现详解

为此,我们只需要在残差函数中将lambda^(1/2)p加在了返回的array的后面

regularization = 0.1 # 正则化系数lambda
 
 
# 残差函数
def residuals_func(p, y, x):
 ret = fit_func(p, x) - y
 ret = np.append(ret, np.sqrt(regularization) * p) # 将lambda^(1/2)p加在了返回的array的后面
 return ret

输出拟合参数:

最小二乘法及其python实现详解

图像如下:

最小二乘法及其python实现详解

很明显,在适当的正则化约束下,可以比较好的拟合目标函数。

注意,如果正则化项的系数太大,会导致欠拟合现象(此时的惩罚项权重特别高)

如,设置regularization=0.1时,图像如下:

最小二乘法及其python实现详解

此时明显欠拟合。所以要慎重进行正则化参数的选择。

以上这篇最小二乘法及其python实现详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
回调函数的意义以及python实现实例
Jun 20 Python
Python实现字符串反转的常用方法分析【4种方法】
Sep 30 Python
python3 发送任意文件邮件的实例
Jan 23 Python
Python实现正整数分解质因数操作示例
Aug 01 Python
Python实现一个数组除以一个数的例子
Jul 20 Python
基于python traceback实现异常的获取与处理
Dec 13 Python
python中的 zip函数详解及用法举例
Feb 16 Python
Anaconda+VSCode配置tensorflow开发环境的教程详解
Mar 30 Python
关于tf.matmul() 和tf.multiply() 的区别说明
Jun 18 Python
Python numpy大矩阵运算内存不足如何解决
Nov 19 Python
详解用 python-docx 创建浮动图片
Jan 24 Python
python数字转对应中文的方法总结
Aug 02 Python
在Python 的线程中运行协程的方法
Feb 24 #Python
Python 爬取必应壁纸的实例讲解
Feb 24 #Python
Python unittest工作原理和使用过程解析
Feb 24 #Python
Python 剪绳子的多种思路实现(动态规划和贪心)
Feb 24 #Python
用python介绍4种常用的单链表翻转的方法小结
Feb 24 #Python
关于多元线性回归分析——Python&SPSS
Feb 24 #Python
使用 pytorch 创建神经网络拟合sin函数的实现
Feb 24 #Python
You might like
PHP版自动生成文章摘要
2008/07/23 PHP
PHP类的使用 实例代码讲解
2009/12/28 PHP
浅谈php serialize()与unserialize()的用法
2013/06/05 PHP
php微信公众平台开发类实例
2015/04/01 PHP
WordPress中给媒体文件添加分类和标签的PHP功能实现
2015/12/31 PHP
Yii2超好用的日期和时间组件(值得收藏)
2016/05/05 PHP
PHP严重致命错误处理:php Fatal error: Cannot redeclare class or function
2017/02/05 PHP
doctype后如何获得body.clientHeight的方法
2007/07/11 Javascript
JavaScript 学习点滴记录
2009/04/24 Javascript
javascript实现表格排序 编辑 拖拽 缩放
2015/01/02 Javascript
AngularJS自定义控件实例详解
2016/12/13 Javascript
JavaScript数据结构与算法之队列原理与用法实例详解
2017/11/22 Javascript
微信小程序之圆形进度条实现思路
2018/02/22 Javascript
详解用Node.js写一个简单的命令行工具
2018/03/01 Javascript
微信小程序中插入激励视频广告并获取收益(实例代码)
2019/12/06 Javascript
详细介绍解决vue和jsp结合的方法
2020/02/06 Javascript
JavaScript 事件代理需要注意的地方
2020/09/08 Javascript
[55:11]完美世界DOTA2联赛PWL S2 SZ vs LBZS 第一场 11.26
2020/11/30 DOTA
python动态监控日志内容的示例
2014/02/16 Python
基于Linux系统中python matplotlib画图的中文显示问题的解决方法
2017/06/15 Python
Pycharm技巧之代码跳转该如何回退
2017/07/16 Python
python实现xlsx文件分析详解
2018/01/02 Python
利用python为运维人员写一个监控脚本
2018/03/25 Python
pandas 两列时间相减换算为秒的方法
2018/04/20 Python
Python实现的逻辑回归算法示例【附测试csv文件下载】
2018/12/28 Python
python调用自定义函数的实例操作
2019/06/26 Python
django 解决model中类写不到数据库中,数据库无此字段的问题
2020/05/20 Python
小结Python的反射机制
2020/09/28 Python
一款纯css3实现的非常实用的鼠标悬停特效演示
2014/11/05 HTML / CSS
Fanatics官网:运动服装、球衣、运动装备
2020/10/12 全球购物
护理学院专科毕业生求职信
2014/06/28 职场文书
2014旅游局领导班子四风问题对照检查材料思想汇报
2014/09/19 职场文书
反对四风自我剖析材料
2014/10/07 职场文书
介绍信样本
2015/01/31 职场文书
保送生自荐信
2015/03/06 职场文书
2015年七夕爱情寄语
2015/03/24 职场文书