将labelme格式数据转化为标准的coco数据集格式方式


Posted in Python onFebruary 17, 2020

labelme标注图像生成的json格式:

{
 "version": "3.11.2",
 "flags": {},
 "shapes": [# 每个对象的形状
 { # 第一个对象
  "label": "malignant",
  "line_color": null,
  "fill_color": null,
  "points": [# 边缘是由点构成,将这些点连在一起就是对象的边缘多边形
  [
   371, # 第一个点 x 坐标
   257 # 第一个点 y 坐标
  ],
  ...
  [
   412,
   255
  ]
  ],
  "shape_type": "polygon" # 形状类型:多边形
 },
 {
  "label": "malignant", # 第一个对象的标签
  "line_color": null,
  "fill_color": null,
  "points": [# 第二个对象
  [
   522,
   274
  ],
  ...
  [
   561,
   303
  ]
  ],
  "shape_type": "polygon"
 },
 {
  "label": "malignant", # 第二个对象的标签
  "line_color": null,
  "fill_color": null,
 "imagePath": "../../val2017/000001.jpg", # 原始图片的路径
 "imageData":"something too long ",# 原图像数据 通过该字段可以解析出原图像数据
 "imageHeight": 768,
 "imageWidth": 1024
}

coco标准数据集格式:

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), and image captions(看图说话),使用JSON文件存储。

基本的JSON结构体类型

这3种类型共享下面所列的基本类型,包括image、categories、annotation类型。

Images类型:

"images": [
  {
   "height": 768,
   "width": 1024,
   "id": 1, #图片id
   "file_name": "000002.jpg"
  }
]

categories类型:

"categories": [
  {
   "supercategory": "Cancer", #父类
   "id": 1,   #标签类别id,0表示背景
   "name": "benign" #子类
  },
  {
   "supercategory": "Cancer",
   "id": 2,
   "name": "malignant"
  }
 ],

annotations类型:

"annotations": [
  {
   "segmentation": [#坐标点的坐标值
    [
     418,
     256,
     391,
     293,
     406,
     323,
     432,
     340,
     452,
     329,
     458,
     311,
     458,
     286,
     455,
     277,
     439,
     264,
     418,
     293,
     391,
     256
    ]
   ],
   "iscrowd": 0, #单个的对象(iscrowd=0)可能需要多个polygon来表示
   "image_id": 1, #和image的id保持一致
   "bbox": [  #标注的边框值 bbox是将segmentation包起来的水平矩形
    391.0,
    256.0,
    67.0,
    84.0
   ],
   "area": 5628.0, #标注的边框面积
   "category_id": 1, #所属类别id
   "id": 1   #标注边框的id : 1,2,3...,n
  }
]

labelme 转化为coco

# -*- coding:utf-8 -*-
# !/usr/bin/env python
 
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
 
class MyEncoder(json.JSONEncoder):
 def default(self, obj):
  if isinstance(obj, np.integer):
   return int(obj)
  elif isinstance(obj, np.floating):
   return float(obj)
  elif isinstance(obj, np.ndarray):
   return obj.tolist()
  else:
   return super(MyEncoder, self).default(obj)
 
class labelme2coco(object):
 def __init__(self, labelme_json=[], save_json_path='./tran.json'):
  '''
  :param labelme_json: 所有labelme的json文件路径组成的列表
  :param save_json_path: json保存位置
  '''
  self.labelme_json = labelme_json
  self.save_json_path = save_json_path
  self.images = []
  self.categories = []
  self.annotations = []
  # self.data_coco = {}
  self.label = []
  self.annID = 1
  self.height = 0
  self.width = 0
 
  self.save_json()
 
 def data_transfer(self):
 
  for num, json_file in enumerate(self.labelme_json):
   with open(json_file, 'r') as fp:
    data = json.load(fp) # 加载json文件
    self.images.append(self.image(data, num))
    for shapes in data['shapes']:
     label = shapes['label']
     if label not in self.label:
      self.categories.append(self.categorie(label))
      self.label.append(label)
     points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
     #points.append([points[0][0],points[1][1]])
     #points.append([points[1][0],points[0][1]])
     self.annotations.append(self.annotation(points, label, num))
     self.annID += 1
 
 def image(self, data, num):
  image = {}
  img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
  # img=io.imread(data['imagePath']) # 通过图片路径打开图片
  # img = cv2.imread(data['imagePath'], 0)
  height, width = img.shape[:2]
  img = None
  image['height'] = height
  image['width'] = width
  image['id'] = num + 1
  #image['file_name'] = data['imagePath'].split('/')[-1]
  image['file_name'] = data['imagePath'][3:14]
  self.height = height
  self.width = width
 
  return image
 
 def categorie(self, label):
  categorie = {}
  categorie['supercategory'] = 'Cancer'
  categorie['id'] = len(self.label) + 1 # 0 默认为背景
  categorie['name'] = label
  return categorie
 
 def annotation(self, points, label, num):
  annotation = {}
  annotation['segmentation'] = [list(np.asarray(points).flatten())]
  annotation['iscrowd'] = 0
  annotation['image_id'] = num + 1
  # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
  # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
  annotation['bbox'] = list(map(float, self.getbbox(points)))
  annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
  # annotation['category_id'] = self.getcatid(label)
  annotation['category_id'] = self.getcatid(label)#注意,源代码默认为1
  annotation['id'] = self.annID
  return annotation
 
 def getcatid(self, label):
  for categorie in self.categories:
   if label == categorie['name']:
    return categorie['id']
  return 1
 
 def getbbox(self, points):
  # img = np.zeros([self.height,self.width],np.uint8)
  # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
  # cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
  polygons = points
 
  mask = self.polygons_to_mask([self.height, self.width], polygons)
  return self.mask2box(mask)
 
 def mask2box(self, mask):
  '''从mask反算出其边框
  mask:[h,w] 0、1组成的图片
  1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
  '''
  # np.where(mask==1)
  index = np.argwhere(mask == 1)
  rows = index[:, 0]
  clos = index[:, 1]
  # 解析左上角行列号
  left_top_r = np.min(rows) # y
  left_top_c = np.min(clos) # x
 
  # 解析右下角行列号
  right_bottom_r = np.max(rows)
  right_bottom_c = np.max(clos)
 
  # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
  # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
  # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
  return [left_top_c, left_top_r, right_bottom_c - left_top_c,
    right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
 
 def polygons_to_mask(self, img_shape, polygons):
  mask = np.zeros(img_shape, dtype=np.uint8)
  mask = PIL.Image.fromarray(mask)
  xy = list(map(tuple, polygons))
  PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
  mask = np.array(mask, dtype=bool)
  return mask
 
 def data2coco(self):
  data_coco = {}
  data_coco['images'] = self.images
  data_coco['categories'] = self.categories
  data_coco['annotations'] = self.annotations
  return data_coco
 
 def save_json(self):
  self.data_transfer()
  self.data_coco = self.data2coco()
  # 保存json文件
  json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示
 
 
labelme_json = glob.glob('./Annotations/*.json')
# labelme_json=['./Annotations/*.json']
 
labelme2coco(labelme_json, './json/test.json')

以上这篇将labelme格式数据转化为标准的coco数据集格式方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 解析html之BeautifulSoup
Jul 07 Python
跟老齐学Python之让人欢喜让人忧的迭代
Oct 02 Python
Python Queue模块详解
Nov 30 Python
Anaconda入门使用总结
Apr 05 Python
深入浅析python with语句简介
Apr 11 Python
Python单元和文档测试实例详解
Apr 11 Python
解决Django后台ManyToManyField显示成Object的问题
Aug 09 Python
Django项目之Elasticsearch搜索引擎的实例
Aug 21 Python
python3实现单目标粒子群算法
Nov 14 Python
pandas中的数据去重处理的实现方法
Feb 10 Python
Pycharm中import torch报错的快速解决方法
Mar 05 Python
详解Python IO编程
Jul 24 Python
开启Django博客的RSS功能的实现方法
Feb 17 #Python
Python3打包exe代码2种方法实例解析
Feb 17 #Python
Django 博客实现简单的全文搜索的示例代码
Feb 17 #Python
Python使用qrcode二维码库生成二维码方法详解
Feb 17 #Python
django2.2 和 PyMySQL版本兼容问题
Feb 17 #Python
基于python3的socket聊天编程
Feb 17 #Python
python词云库wordCloud使用方法详解(解决中文乱码)
Feb 17 #Python
You might like
Zerg兵种介绍
2020/03/14 星际争霸
特详细的PHPMYADMIN简明安装教程
2008/08/01 PHP
洪恩在线成语词典小偷程序php版
2012/04/20 PHP
解决laravel5.4下的group by报错的问题
2019/10/16 PHP
jQuery实现级联菜单效果(仿淘宝首页菜单动画)
2014/04/10 Javascript
jQuery新的事件绑定机制on()示例应用
2014/07/18 Javascript
JavaScript弹出对话框的三种方式
2016/03/23 Javascript
jquery实现跳到底部,回到顶部效果的简单实例(类似锚)
2016/07/10 Javascript
简单的渐变轮播插件
2017/01/12 Javascript
Bootstrap table表格简单操作
2017/02/07 Javascript
手写Node静态资源服务器的实现方法
2018/03/20 Javascript
基于jQuery实现Ajax验证用户名是否可用实例
2018/03/25 jQuery
react-navigation之动态修改title的内容
2018/09/26 Javascript
VUE 直接通过JS 修改html对象的值导致没有更新到数据中解决方法分析
2019/12/02 Javascript
vue-cli3配置favicon.ico和title的流程
2020/10/27 Javascript
Echarts在Taro微信小程序开发中的踩坑记录
2020/11/09 Javascript
基于p5.js 2D图像接口的扩展(交互实现)
2020/11/30 Javascript
使用Python判断IP地址合法性的方法实例
2014/03/13 Python
Django集成百度富文本编辑器uEditor攻略
2014/07/04 Python
Django中几种重定向方法
2015/04/28 Python
Python中scatter函数参数及用法详解
2017/11/08 Python
Python使用selenium实现网页用户名 密码 验证码自动登录功能
2018/05/16 Python
Python进程池Pool应用实例分析
2019/11/27 Python
使用OpenCV获取图片连通域数量,并用不同颜色标记函
2020/06/04 Python
重构Python代码的六个实例
2020/11/25 Python
GAP欧盟网上商店:GAP EU
2016/09/13 全球购物
微软台湾官方网站:Microsoft台湾
2018/08/15 全球购物
英国邮购活的植物主要供应商:Gardening Direct
2019/01/28 全球购物
酒吧员工的岗位职责
2013/11/26 职场文书
公司合作意向书范文
2014/07/30 职场文书
介绍信的写法
2015/01/31 职场文书
第28个世界无烟日活动总结
2015/02/10 职场文书
信贷客户经理岗位职责
2015/04/09 职场文书
2015安全保卫工作总结
2015/04/25 职场文书
军训结束新闻稿
2015/07/17 职场文书
用Python写一个简易版弹球游戏
2021/04/13 Python