python验证码识别教程之利用滴水算法分割图片


Posted in Python onJune 05, 2018

滴水算法概述

滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题。

引言

之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码。

我对上面的代码进行了一些小修改,同时升级为python3的代码。

还是以这张图片为例:

python验证码识别教程之利用滴水算法分割图片

在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法。

首先使用之前文章中介绍的垂直投影或者连通域先进行一次切割处理,得到结果如下:

python验证码识别教程之利用滴水算法分割图片

针对于最后粘连情况来使用滴水算法处理:

from itertools import groupby

def binarizing(img,threshold):
 """传入image对象进行灰度、二值处理"""
 img = img.convert("L") # 转灰度
 pixdata = img.load()
 w, h = img.size
 # 遍历所有像素,大于阈值的为黑色
 for y in range(h):
  for x in range(w):
   if pixdata[x, y] < threshold:
    pixdata[x, y] = 0
   else:
    pixdata[x, y] = 255
 return img

def vertical(img):
 """传入二值化后的图片进行垂直投影"""
 pixdata = img.load()
 w,h = img.size
 result = []
 for x in range(w):
  black = 0
  for y in range(h):
   if pixdata[x,y] == 0:
    black += 1
  result.append(black)
 return result

def get_start_x(hist_width):
 """根据图片垂直投影的结果来确定起点
  hist_width中间值 前后取4个值 再这范围内取最小值
 """
 mid = len(hist_width) // 2 # 注意py3 除法和py2不同
 temp = hist_width[mid-4:mid+5]
 return mid - 4 + temp.index(min(temp))

def get_nearby_pix_value(img_pix,x,y,j):
 """获取临近5个点像素数据"""
 if j == 1:
  return 0 if img_pix[x-1,y+1] == 0 else 1
 elif j ==2:
  return 0 if img_pix[x,y+1] == 0 else 1
 elif j ==3:
  return 0 if img_pix[x+1,y+1] == 0 else 1
 elif j ==4:
  return 0 if img_pix[x+1,y] == 0 else 1
 elif j ==5:
  return 0 if img_pix[x-1,y] == 0 else 1
 else:
  raise Exception("get_nearby_pix_value error")


def get_end_route(img,start_x,height):
 """获取滴水路径"""
 left_limit = 0
 right_limit = img.size[0] - 1
 end_route = []
 cur_p = (start_x,0)
 last_p = cur_p
 end_route.append(cur_p)

 while cur_p[1] < (height-1):
  sum_n = 0
  max_w = 0
  next_x = cur_p[0]
  next_y = cur_p[1]
  pix_img = img.load()
  for i in range(1,6):
   cur_w = get_nearby_pix_value(pix_img,cur_p[0],cur_p[1],i) * (6-i)
   sum_n += cur_w
   if max_w < cur_w:
    max_w = cur_w
  if sum_n == 0:
   # 如果全黑则看惯性
   max_w = 4
  if sum_n == 15:
   max_w = 6

  if max_w == 1:
   next_x = cur_p[0] - 1
   next_y = cur_p[1]
  elif max_w == 2:
   next_x = cur_p[0] + 1
   next_y = cur_p[1]
  elif max_w == 3:
   next_x = cur_p[0] + 1
   next_y = cur_p[1] + 1
  elif max_w == 5:
   next_x = cur_p[0] - 1
   next_y = cur_p[1] + 1
  elif max_w == 6:
   next_x = cur_p[0]
   next_y = cur_p[1] + 1
  elif max_w == 4:
   if next_x > cur_p[0]:
    # 向右
    next_x = cur_p[0] + 1
    next_y = cur_p[1] + 1
   if next_x < cur_p[0]:
    next_x = cur_p[0]
    next_y = cur_p[1] + 1
   if sum_n == 0:
    next_x = cur_p[0]
    next_y = cur_p[1] + 1
  else:
   raise Exception("get end route error")

  if last_p[0] == next_x and last_p[1] == next_y:
   if next_x < cur_p[0]:
    max_w = 5
    next_x = cur_p[0] + 1
    next_y = cur_p[1] + 1
   else:
    max_w = 3
    next_x = cur_p[0] - 1
    next_y = cur_p[1] + 1
  last_p = cur_p

  if next_x > right_limit:
   next_x = right_limit
   next_y = cur_p[1] + 1
  if next_x < left_limit:
   next_x = left_limit
   next_y = cur_p[1] + 1
  cur_p = (next_x,next_y)
  end_route.append(cur_p)
 return end_route

def get_split_seq(projection_x):
 split_seq = []
 start_x = 0
 length = 0
 for pos_x, val in enumerate(projection_x):
  if val == 0 and length == 0:
   continue
  elif val == 0 and length != 0:
   split_seq.append([start_x, length])
   length = 0
  elif val == 1:
   if length == 0:
    start_x = pos_x
   length += 1
  else:
   raise Exception('generating split sequence occurs error')
 # 循环结束时如果length不为0,说明还有一部分需要append
 if length != 0:
  split_seq.append([start_x, length])
 return split_seq


def do_split(source_image, starts, filter_ends):
 """
 具体实行切割
 : param starts: 每一行的起始点 tuple of list
 : param ends: 每一行的终止点
 """
 left = starts[0][0]
 top = starts[0][1]
 right = filter_ends[0][0]
 bottom = filter_ends[0][1]
 pixdata = source_image.load()
 for i in range(len(starts)):
  left = min(starts[i][0], left)
  top = min(starts[i][1], top)
  right = max(filter_ends[i][0], right)
  bottom = max(filter_ends[i][1], bottom)
 width = right - left + 1
 height = bottom - top + 1
 image = Image.new('RGB', (width, height), (255,255,255))
 for i in range(height):
  start = starts[i]
  end = filter_ends[i]
  for x in range(start[0], end[0]+1):
   if pixdata[x,start[1]] == 0:
    image.putpixel((x - left, start[1] - top), (0,0,0))
 return image

def drop_fall(img):
 """滴水分割"""
 width,height = img.size
 # 1 二值化
 b_img = binarizing(img,200)
 # 2 垂直投影
 hist_width = vertical(b_img)
 # 3 获取起点
 start_x = get_start_x(hist_width)

 # 4 开始滴水算法
 start_route = []
 for y in range(height):
  start_route.append((0,y))

 end_route = get_end_route(img,start_x,height)
 filter_end_route = [max(list(k)) for _,k in groupby(end_route,lambda x:x[1])] # 注意这里groupby
 img1 = do_split(img,start_route,filter_end_route)
 img1.save('cuts-d-1.png')

 start_route = list(map(lambda x : (x[0]+1,x[1]),filter_end_route)) # python3中map不返回list需要自己转换
 end_route = []
 for y in range(height):
  end_route.append((width-1,y))
 img2 = do_split(img,start_route,end_route)
 img2.save('cuts-d-2.png')

if __name__ == '__main__':
 p = Image.open("cuts-2.png")
 drop_fall(p)

执行后会得到切分后的2个照片:

python验证码识别教程之利用滴水算法分割图片

从这张图片来看,虽然切分成功但是效果比较一般。另外目前的代码只能对2个字符粘连的情况切分,参悟了滴水算法精髓的小伙伴可以试着改成多个字符粘连的情况。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
使用python和pygame绘制繁花曲线的方法
Feb 24 Python
python实现m3u8格式转换为mp4视频格式
Feb 28 Python
python时间日期函数与利用pandas进行时间序列处理详解
Mar 13 Python
Selenium(Python web测试工具)基本用法详解
Aug 10 Python
Python从使用线程到使用async/await的深入讲解
Sep 16 Python
win10下tensorflow和matplotlib安装教程
Sep 19 Python
python3+pyqt5+itchat微信定时发送消息的方法
Feb 20 Python
python os.fork() 循环输出方法
Aug 08 Python
Python字符串格式化输出代码实例
Nov 22 Python
使用tensorflow框架在Colab上跑通猫狗识别代码
Apr 26 Python
基于TensorFlow的CNN实现Mnist手写数字识别
Jun 17 Python
10个python爬虫入门实例(小结)
Nov 01 Python
django反向解析URL和URL命名空间的方法
Jun 05 #Python
python topN 取最大的N个数或最小的N个数方法
Jun 04 #Python
pytorch + visdom 处理简单分类问题的示例
Jun 04 #Python
numpy中以文本的方式存储以及读取数据方法
Jun 04 #Python
浅谈python中np.array的shape( ,)与( ,1)的区别
Jun 04 #Python
Numpy array数据的增、删、改、查实例
Jun 04 #Python
python实现判断一个字符串是否是合法IP地址的示例
Jun 04 #Python
You might like
动画 《Pokemon Sword·Shield》系列WEB动画《薄明之翼》第2话声优阵容公开!
2020/03/06 日漫
PHP Squid中可缓存的动态网页设计
2008/09/17 PHP
PHP获取文件相对路径的方法
2015/02/26 PHP
JS无限极树形菜单,json格式、数组格式通用示例
2013/07/30 Javascript
jQuery控制TR显示隐藏的三种常用方法
2014/08/21 Javascript
45个JavaScript编程注意事项、技巧大全
2015/02/11 Javascript
jQuery实现有动画淡出效果的二级折叠菜单代码
2015/10/17 Javascript
JavaScript如何实现在文本框(密码框)输入提示语
2015/12/25 Javascript
学习使用bootstrap3栅格系统
2016/04/12 Javascript
jquery实现图片上传前本地预览功能
2016/05/10 Javascript
Validform表单验证总结篇
2016/10/31 Javascript
利用JQuery实现datatables插件的增加和删除行功能
2017/01/06 Javascript
Thinkphp5微信小程序获取用户信息接口的实例详解
2017/09/26 Javascript
微信小程序学习总结(五)常见问题实例小结
2020/06/04 Javascript
vue-cli4.x创建企业级项目的方法步骤
2020/06/18 Javascript
Element Steps步骤条的使用方法
2020/07/26 Javascript
让python同时兼容python2和python3的8个技巧分享
2014/07/11 Python
python采用django框架实现支付宝即时到帐接口
2016/05/17 Python
Python数据操作方法封装类实例
2017/06/23 Python
Python+OpenCV人脸检测原理及示例详解
2020/10/19 Python
浅析Python pandas模块输出每行中间省略号问题
2018/07/03 Python
python logging重复记录日志问题的解决方法
2018/07/12 Python
python通过zabbix api获取主机
2018/09/17 Python
python 利用for循环 保存多个图像或者文件的实例
2018/11/09 Python
Django如何使用第三方服务发送电子邮件
2019/08/14 Python
Python读写Excel表格的方法
2021/03/02 Python
GUESS西班牙官方网上商城:美国服饰品牌
2017/03/15 全球购物
软件工程专业推荐信
2013/10/28 职场文书
自荐信格式技巧有哪些呢
2013/11/19 职场文书
项目投资建议书
2014/05/16 职场文书
英语专业毕业生求职信
2014/05/24 职场文书
司法局群众路线教育实践活动整改措施思想汇报
2014/10/13 职场文书
二年级语文下册复习计划
2015/01/19 职场文书
服务员岗位职责范本
2015/04/09 职场文书
Python机器学习之底层实现KNN
2021/06/20 Python
动漫APP软件排行榜前十名,半次元上榜,第一款由腾讯公司推出
2022/03/18 杂记