python验证码识别教程之利用滴水算法分割图片


Posted in Python onJune 05, 2018

滴水算法概述

滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题。

引言

之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码。

我对上面的代码进行了一些小修改,同时升级为python3的代码。

还是以这张图片为例:

python验证码识别教程之利用滴水算法分割图片

在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法。

首先使用之前文章中介绍的垂直投影或者连通域先进行一次切割处理,得到结果如下:

python验证码识别教程之利用滴水算法分割图片

针对于最后粘连情况来使用滴水算法处理:

from itertools import groupby

def binarizing(img,threshold):
 """传入image对象进行灰度、二值处理"""
 img = img.convert("L") # 转灰度
 pixdata = img.load()
 w, h = img.size
 # 遍历所有像素,大于阈值的为黑色
 for y in range(h):
  for x in range(w):
   if pixdata[x, y] < threshold:
    pixdata[x, y] = 0
   else:
    pixdata[x, y] = 255
 return img

def vertical(img):
 """传入二值化后的图片进行垂直投影"""
 pixdata = img.load()
 w,h = img.size
 result = []
 for x in range(w):
  black = 0
  for y in range(h):
   if pixdata[x,y] == 0:
    black += 1
  result.append(black)
 return result

def get_start_x(hist_width):
 """根据图片垂直投影的结果来确定起点
  hist_width中间值 前后取4个值 再这范围内取最小值
 """
 mid = len(hist_width) // 2 # 注意py3 除法和py2不同
 temp = hist_width[mid-4:mid+5]
 return mid - 4 + temp.index(min(temp))

def get_nearby_pix_value(img_pix,x,y,j):
 """获取临近5个点像素数据"""
 if j == 1:
  return 0 if img_pix[x-1,y+1] == 0 else 1
 elif j ==2:
  return 0 if img_pix[x,y+1] == 0 else 1
 elif j ==3:
  return 0 if img_pix[x+1,y+1] == 0 else 1
 elif j ==4:
  return 0 if img_pix[x+1,y] == 0 else 1
 elif j ==5:
  return 0 if img_pix[x-1,y] == 0 else 1
 else:
  raise Exception("get_nearby_pix_value error")


def get_end_route(img,start_x,height):
 """获取滴水路径"""
 left_limit = 0
 right_limit = img.size[0] - 1
 end_route = []
 cur_p = (start_x,0)
 last_p = cur_p
 end_route.append(cur_p)

 while cur_p[1] < (height-1):
  sum_n = 0
  max_w = 0
  next_x = cur_p[0]
  next_y = cur_p[1]
  pix_img = img.load()
  for i in range(1,6):
   cur_w = get_nearby_pix_value(pix_img,cur_p[0],cur_p[1],i) * (6-i)
   sum_n += cur_w
   if max_w < cur_w:
    max_w = cur_w
  if sum_n == 0:
   # 如果全黑则看惯性
   max_w = 4
  if sum_n == 15:
   max_w = 6

  if max_w == 1:
   next_x = cur_p[0] - 1
   next_y = cur_p[1]
  elif max_w == 2:
   next_x = cur_p[0] + 1
   next_y = cur_p[1]
  elif max_w == 3:
   next_x = cur_p[0] + 1
   next_y = cur_p[1] + 1
  elif max_w == 5:
   next_x = cur_p[0] - 1
   next_y = cur_p[1] + 1
  elif max_w == 6:
   next_x = cur_p[0]
   next_y = cur_p[1] + 1
  elif max_w == 4:
   if next_x > cur_p[0]:
    # 向右
    next_x = cur_p[0] + 1
    next_y = cur_p[1] + 1
   if next_x < cur_p[0]:
    next_x = cur_p[0]
    next_y = cur_p[1] + 1
   if sum_n == 0:
    next_x = cur_p[0]
    next_y = cur_p[1] + 1
  else:
   raise Exception("get end route error")

  if last_p[0] == next_x and last_p[1] == next_y:
   if next_x < cur_p[0]:
    max_w = 5
    next_x = cur_p[0] + 1
    next_y = cur_p[1] + 1
   else:
    max_w = 3
    next_x = cur_p[0] - 1
    next_y = cur_p[1] + 1
  last_p = cur_p

  if next_x > right_limit:
   next_x = right_limit
   next_y = cur_p[1] + 1
  if next_x < left_limit:
   next_x = left_limit
   next_y = cur_p[1] + 1
  cur_p = (next_x,next_y)
  end_route.append(cur_p)
 return end_route

def get_split_seq(projection_x):
 split_seq = []
 start_x = 0
 length = 0
 for pos_x, val in enumerate(projection_x):
  if val == 0 and length == 0:
   continue
  elif val == 0 and length != 0:
   split_seq.append([start_x, length])
   length = 0
  elif val == 1:
   if length == 0:
    start_x = pos_x
   length += 1
  else:
   raise Exception('generating split sequence occurs error')
 # 循环结束时如果length不为0,说明还有一部分需要append
 if length != 0:
  split_seq.append([start_x, length])
 return split_seq


def do_split(source_image, starts, filter_ends):
 """
 具体实行切割
 : param starts: 每一行的起始点 tuple of list
 : param ends: 每一行的终止点
 """
 left = starts[0][0]
 top = starts[0][1]
 right = filter_ends[0][0]
 bottom = filter_ends[0][1]
 pixdata = source_image.load()
 for i in range(len(starts)):
  left = min(starts[i][0], left)
  top = min(starts[i][1], top)
  right = max(filter_ends[i][0], right)
  bottom = max(filter_ends[i][1], bottom)
 width = right - left + 1
 height = bottom - top + 1
 image = Image.new('RGB', (width, height), (255,255,255))
 for i in range(height):
  start = starts[i]
  end = filter_ends[i]
  for x in range(start[0], end[0]+1):
   if pixdata[x,start[1]] == 0:
    image.putpixel((x - left, start[1] - top), (0,0,0))
 return image

def drop_fall(img):
 """滴水分割"""
 width,height = img.size
 # 1 二值化
 b_img = binarizing(img,200)
 # 2 垂直投影
 hist_width = vertical(b_img)
 # 3 获取起点
 start_x = get_start_x(hist_width)

 # 4 开始滴水算法
 start_route = []
 for y in range(height):
  start_route.append((0,y))

 end_route = get_end_route(img,start_x,height)
 filter_end_route = [max(list(k)) for _,k in groupby(end_route,lambda x:x[1])] # 注意这里groupby
 img1 = do_split(img,start_route,filter_end_route)
 img1.save('cuts-d-1.png')

 start_route = list(map(lambda x : (x[0]+1,x[1]),filter_end_route)) # python3中map不返回list需要自己转换
 end_route = []
 for y in range(height):
  end_route.append((width-1,y))
 img2 = do_split(img,start_route,end_route)
 img2.save('cuts-d-2.png')

if __name__ == '__main__':
 p = Image.open("cuts-2.png")
 drop_fall(p)

执行后会得到切分后的2个照片:

python验证码识别教程之利用滴水算法分割图片

从这张图片来看,虽然切分成功但是效果比较一般。另外目前的代码只能对2个字符粘连的情况切分,参悟了滴水算法精髓的小伙伴可以试着改成多个字符粘连的情况。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
python base64 decode incorrect padding错误解决方法
Jan 08 Python
深入理解python多进程编程
Jun 12 Python
Python实现简单的四则运算计算器
Nov 02 Python
Python中模块与包有相同名字的处理方法
May 05 Python
Python动态导入模块的方法实例分析
Jun 28 Python
解决Pycharm出现的部分快捷键无效问题
Oct 22 Python
Python中安装easy_install的方法
Nov 18 Python
Python代码实现http/https代理服务器的脚本
Aug 12 Python
python求平均数、方差、中位数的例子
Aug 22 Python
Python 使用threading+Queue实现线程池示例
Dec 21 Python
Python实现剪刀石头布小游戏(与电脑对战)
Dec 31 Python
Python机器学习三大件之一numpy
May 10 Python
django反向解析URL和URL命名空间的方法
Jun 05 #Python
python topN 取最大的N个数或最小的N个数方法
Jun 04 #Python
pytorch + visdom 处理简单分类问题的示例
Jun 04 #Python
numpy中以文本的方式存储以及读取数据方法
Jun 04 #Python
浅谈python中np.array的shape( ,)与( ,1)的区别
Jun 04 #Python
Numpy array数据的增、删、改、查实例
Jun 04 #Python
python实现判断一个字符串是否是合法IP地址的示例
Jun 04 #Python
You might like
PHP设置图片文件上传大小的具体实现方法
2013/10/11 PHP
PHP strip_tags()去除HTML、XML以及PHP的标签介绍
2014/02/18 PHP
PHP操作MySQL事务实例
2014/11/05 PHP
Yii框架用户登录session丢失问题解决方法
2017/01/07 PHP
tp5.1 实现setInc字段自动加1
2019/10/18 PHP
基于JQuery的浮动DIV显示提示信息并自动隐藏
2011/02/11 Javascript
eval与window.eval的差别分析
2011/03/17 Javascript
js控制表单奇偶行样式的简单方法
2013/07/31 Javascript
javascript匿名函数应用示例介绍
2014/03/07 Javascript
利用原生JavaScript获取元素样式只是获取而已
2014/10/08 Javascript
JS如何设置cookie有效期为当天24点并弹出欢迎登陆界面
2016/08/04 Javascript
AngularJS表单和输入验证实例
2016/11/02 Javascript
EasyUI的DataGrid绑定Json数据源的示例代码
2017/12/16 Javascript
浅谈在不使用ssr的情况下解决Vue单页面SEO问题(2)
2018/11/08 Javascript
移动端如何用下拉刷新的方式实现上拉加载
2018/12/10 Javascript
微信小程序云开发之使用云函数
2019/05/17 Javascript
Vue动态修改网页标题的方法及遇到问题
2019/06/09 Javascript
Elementui表格组件+sortablejs实现行拖拽排序的示例代码
2019/08/28 Javascript
vue v-for出来的列表,点击某个li使得当前被点击的li字体变红操作
2020/07/17 Javascript
[26:24]完美副总裁、DOTA2负责人蔡玮专访:电竞如人生
2014/09/11 DOTA
python WindowsError的错误代码详解
2017/07/23 Python
浅谈python中的数字类型与处理工具
2017/08/02 Python
Django后台获取前端post上传的文件方法
2018/05/28 Python
Python表达式的优先级详解
2020/02/18 Python
python实现简单井字棋游戏
2020/03/04 Python
python的reverse函数翻转结果为None的问题
2020/05/11 Python
HTML5+WebSocket实现多文件同时上传的实例
2016/12/29 HTML / CSS
荷兰在线体育用品商店:Avantisport.nl
2018/07/04 全球购物
加拿大在线旅游公司:Flighthub
2019/03/11 全球购物
印度排名第一的蛋糕、鲜花和礼品送货:Winni
2019/08/02 全球购物
刘胡兰的英雄事迹材料
2014/02/11 职场文书
幼儿园毕业寄语
2014/04/03 职场文书
2015年话务员工作总结
2015/04/29 职场文书
2016年学习贯彻十八届五中全会精神心得体会
2016/01/05 职场文书
2016思想纪律作风整顿心得体会
2016/01/23 职场文书
配置nginx负载均衡
2022/05/06 Servers