Python+树莓派+YOLO打造一款人工智能照相机


Posted in Python onJanuary 02, 2018

不久之前,亚马逊刚刚推出了DeepLens 。这是一款专门面向开发人员的全球首个支持深度学习的摄像机,它所使用的机器学习算法不仅可以检测物体活动和面部表情,而且还可以检测类似弹吉他等复杂的活动。虽然DeepLens还未正式上市,但智能摄像机的概念已经诞生了。

Python+树莓派+YOLO打造一款人工智能照相机 

今天,我们将自己动手打造出一款基于深度学习的照相机,当小鸟出现在摄像头画面中时,它将能检测到小鸟并自动进行拍照。最终成品所拍摄的画面如下所示:

Python+树莓派+YOLO打造一款人工智能照相机 

相机不傻,它可以很机智

我们不打算将一个深度学习模块整合到相机中,相反,我们准备将树莓派“挂钩”到摄像头上,然后通过WiFi来发送照片。本着“一切从简”(穷)为核心出发,我们今天只打算搞一个跟DeepLens类似的概念原型,感兴趣的同学可以自己动手尝试一下。

接下来,我们将使用Python编写一个Web服务器,树莓派将使用这个Web服务器来向计算机发送照片,或进行行为推断和图像检测。

Python+树莓派+YOLO打造一款人工智能照相机 

我们这里所使用的计算机其处理能力会更强,它会使用一种名叫 YOLO 的神经网络架构来检测输入的图像画面,并判断小鸟是否出现在了摄像头画面内。

我们得先从YOLO架构开始,因为它是目前速度最快的检测模型之一。该模型专门给Tensorflow(谷歌基于DistBelief进行研发的第二代人工智能学习系统)留了一个接口,所以我们可以轻松地在不同的平台上安装和运行这个模型。友情提示,如果你使用的是我们本文所使用的迷你模型,你还可以用CPU来进行检测,而不只是依赖于价格昂贵的GPU。

接下来回到我们的概念原型上… 如果像框内检测到了小鸟,那我们就保存图片并进行下一步分析。

检测与拍照

Python+树莓派+YOLO打造一款人工智能照相机 

正如我们所说的,DeepLens的拍照功能是整合在计算机里的,所以它可以直接使用板载计算能力来进行基准检测,并确定图像是否符合我们的标准。

但是像树莓派这样的东西,我们其实并不需要使用它的计算能力来进行实时计算。因此,我们准备使用另一台计算机来推断出现在图像中的内容。

我使用的是一台简单的Linux计算机,它带有一个摄像头以及WiFi无线网卡( 树莓派3 + 摄像头 ),而这个简单的设备将作为我的深度学习机器并进行图像推断。对我来说,这是目前最理想的解决方案了,这不仅大大缩减了我的成本,而且还可以让我在台式机上完成所有的计算。

当然了,如果你不想使用树莓派视频照相机的话,你也可以选择在树莓派上安装OpenCV 3来作为方案B,具体的安装方法请参考【这份文档 】。友情提示,安装过程可谓是非常的麻烦!

接下来,我们需要使用Flask来搭建Web服务器,这样我们就可以从摄像头那里获取图像了。这里我使用了 MiguelGrinberg 所开发的网络摄像头服务器代码( Flask视频流框架 ),并创建了一个简单的jpg终端:

#!/usr/bin/envpython
from import lib import import_module
import os
from flask import Flask, render_template, Response
#uncomment below to use Raspberry Pi camera instead
#from camera_pi import Camera
#comment this out if you're not using USB webcam
from camera_opencv import Camera
app =Flask(__name__)
@app.route('/')
def index():
 return "hello world!"
def gen2(camera):
 """Returns a single imageframe"""
 frame = camera.get_frame()
 yield frame
@app.route('/image.jpg')
def image():
 """Returns a single currentimage for the webcam"""
 return Response(gen2(Camera()),mimetype='image/jpeg')
if __name__ == '__main__':
app.run(host='0.0.0.0', threaded=True)

如果你使用的是树莓派视频照相机,请确保没有注释掉上述代码中from camera_pi那一行,然后注释掉from camera_opencv那一行。

你可以直接使用命令python3 app.py或gunicorn来运行服务器,这跟Miguel在文档中写的方法是一样的。如果我们使用了多台计算机来进行图像推断的话,我们还可以利用Miguel所开发的摄像头管理方案来管理摄像头以及计算线程。

当我们启动了树莓派之后,首先需要根据IP地址来判断服务器是否正常工作,然后尝试通过Web浏览器来访问服务器。

URL地址格式类似如下:

http://192.168.1.4:5000/image.jpg

在树莓派中加载Web页面及图像来确定服务器是否正常工作:

Python+树莓派+YOLO打造一款人工智能照相机 

图像导入及推断

既然我们已经设置好了终端来加载摄像头当前的图像内容,我们就可以构建一个脚本来捕捉图像并推断图像中的内容了。

这里我们需要用到request库(一个优秀的Python库,用于从URL地址获取文件资源)以及 Darkflow (YOLO模型基于Tensorflow的实现)。

不幸的是,我们没办法使用pip之类的方法来安装 Darkflow ,所以我们需要克隆整个代码库,然后自己动手完成项目的构建和安装。安装好Darkflow项目之后,我们还需要下载一个YOLO模型。

因为我使用的是速度比较慢的计算机和板载CPU(而不是速度较快的GPU),所以我选择使用YOLO v2迷你网络。当然了,它的功能肯定没有完整的YOLO v2模型的推断准确性高啦!

配置完成之后,我们还需要在计算机中安装Pillow、numpy和OpenCV。最后,我们就可以彻底完成我们的代码,并进行图像检测了。

最终的代码如下所示:

from darkflow.net.build import TFNet
import cv2
from io import BytesIO
import time
import requests
from PIL import Image
import numpy as np
options= {"model": "cfg/tiny-yolo-voc.cfg", "load":"bin/tiny-yolo-voc.weights", "threshold": 0.1}
tfnet= TFNet(options)
birdsSeen= 0
def handleBird():
 pass
whileTrue:
 r =requests.get('http://192.168.1.11:5000/image.jpg') # a bird yo
 curr_img = Image.open(BytesIO(r.content))
 curr_img_cv2 =cv2.cvtColor(np.array(curr_img), cv2.COLOR_RGB2BGR)
 result = tfnet.return_predict(curr_img_cv2)
 print(result)
 for detection in result:
  if detection['label'] == 'bird':
   print("bird detected")
   birdsSeen += 1
   curr_img.save('birds/%i.jpg' %birdsSeen)
 print('running again')
time.sleep(4)

此时,我们不仅可以在命令控制台中查看到树莓派所检测到的内容,而且我们还可以直接在硬盘中查看保存下来的小鸟照片。接下来,我们就可以使用YOLO来标记图片中的小鸟了。

假阳性跟假阴性之间的平衡

我们在代码的options字典中设置了一个threshold键,这个阈值代表的是我们用于检测图像的某种成功率。在测试过程中,我们将其设为了0.1,但是如此低的阈值会给我们带来是更高的假阳性以及误报率。更糟的是,我们所使用的迷你YOLO模型准确率跟完整的YOLO模型相比,差得太多了,但这也是需要考虑的一个平衡因素。

降低阈值意味着我们可以得到更多的模型输出(照片),在我的测试环境中,我阈值设置的比较低,因为我想得到更多的小鸟照片,不过大家可以根据自己的需要来调整阈值参数。

代码开源

跟之前一样,我已经将所有的代码上传到GitHub上了,感兴趣的同学可以自行下载安装【 GitHub传送门 】。

Python 相关文章推荐
Python的面向对象思想分析
Jan 14 Python
一个基于flask的web应用诞生 bootstrap框架美化(3)
Apr 11 Python
解决python升级引起的pip执行错误的问题
Jun 12 Python
Python查找第n个子串的技巧分享
Jun 27 Python
python生成以及打开json、csv和txt文件的实例
Nov 16 Python
详解Python网络框架Django和Scrapy安装指南
Apr 01 Python
解决Django中多条件查询的问题
Jul 18 Python
python multiprocessing模块用法及原理介绍
Aug 20 Python
keras slice layer 层实现方式
Jun 11 Python
Python类成员继承重写的实现
Sep 16 Python
通过Python pyecharts输出保存图片代码实例
Nov 25 Python
python中%格式表达式实例用法
Jun 18 Python
matplotlib绘制动画代码示例
Jan 02 #Python
Python+matplotlib+numpy实现在不同平面的二维条形图
Jan 02 #Python
Python 实现淘宝秒杀的示例代码
Jan 02 #Python
python基于twisted框架编写简单聊天室
Jan 02 #Python
python http接口自动化脚本详解
Jan 02 #Python
详解用python实现简单的遗传算法
Jan 02 #Python
一个Python最简单的接口自动化框架
Jan 02 #Python
You might like
PHP使用pcntl_fork实现多进程下载图片的方法
2014/12/16 PHP
PHP利用百度ai实现文本和图片审核
2019/05/08 PHP
PHP7 list() 函数修改
2021/03/09 PHP
jQuery实现表头固定效果的实例代码
2013/05/24 Javascript
JavaScript中把数字转换为字符串的程序代码
2013/06/19 Javascript
21个值得收藏的Javascript技巧
2014/02/04 Javascript
我的Node.js学习之路(二)NPM模块管理
2014/07/06 Javascript
兼容各大浏览器的JavaScript阻止事件冒泡代码
2015/07/09 Javascript
AngularJS实现分页显示数据库信息
2016/07/01 Javascript
javascript汉字拼音互转的简单实例
2016/10/09 Javascript
关于javascript事件响应的基础语法总结(必看篇)
2016/12/26 Javascript
Zepto实现密码的隐藏/显示
2017/04/07 Javascript
validationEngine 表单验证插件使用实例代码
2017/06/15 Javascript
js链表操作(实例讲解)
2017/08/29 Javascript
vue2.0开发入门笔记之.vue文件的生成和使用
2017/09/19 Javascript
详解jQuery中的getAll()和cleanData()
2019/04/15 jQuery
vue封装可复用组件confirm,并绑定在vue原型上的示例
2019/10/31 Javascript
js实现ajax的用户简单登入功能
2020/06/18 Javascript
详解element-ui 表单校验 Rules 配置 常用黑科技
2020/07/11 Javascript
python操作xml文件详细介绍
2014/06/09 Python
Python实现简单拆分PDF文件的方法
2015/07/30 Python
Python面向对象编程基础解析(二)
2017/10/26 Python
Pyinstaller打包.py生成.exe的方法和报错总结
2019/04/02 Python
python使用writerows写csv文件产生多余空行的处理方法
2019/08/01 Python
python基于exchange函数发送邮件过程详解
2020/11/06 Python
双立人加拿大官网:Zwilling加拿大
2020/08/10 全球购物
卫校中专生个人自我评价
2013/09/19 职场文书
酒吧副总经理岗位职责
2013/12/10 职场文书
法学个人求职信范文
2014/01/27 职场文书
经典的毕业生自荐信范文
2014/04/14 职场文书
小学语文教学经验交流材料
2014/06/02 职场文书
企业法人代表任命书
2014/06/06 职场文书
会计人员演讲稿
2014/09/11 职场文书
党员干部民主生活会议批评与自我批评材料
2014/09/20 职场文书
工厂仓库管理员岗位职责
2015/04/09 职场文书
亮剑观后感600字
2015/06/05 职场文书