Python实现的异步代理爬虫及代理池


Posted in Python onMarch 17, 2017

使用python asyncio实现了一个异步代理池,根据规则爬取代理网站上的免费代理,在验证其有效后存入redis中,定期扩展代理的数量并检验池中代理的有效性,移除失效的代理。同时用aiohttp实现了一个server,其他的程序可以通过访问相应的url来从代理池中获取代理。

源码

Github

环境

  • Python 3.5+
  • Redis
  • PhantomJS(可选)
  • Supervisord(可选)

因为代码中大量使用了asyncio的async和await语法,它们是在Python3.5中才提供的,所以最好使用Python3.5及以上的版本,我使用的是Python3.6。

依赖

  • redis
  • aiohttp
  • bs4
  • lxml
  • requests
  • selenium

selenium包主要是用来操作PhantomJS的。

下面来对代码进行说明。

1. 爬虫部分

核心代码

async def start(self):
 for rule in self._rules:
 parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理
 logger.debug('{0} crawler started'.format(rule.__rule_name__))
 if not rule.use_phantomjs:
  await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面
 else:
  await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages,
rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取
 await self._pages.join()
 parser.cancel()
 logger.debug('{0} crawler finished'.format(rule.__rule_name__))

上面的核心代码实际上是一个用asyncio.Queue实现的生产-消费者模型,下面是该模型的一个简单实现:

import asyncio
from random import random
async def produce(queue, n):
 for x in range(1, n + 1):
 print('produce ', x)
 await asyncio.sleep(random())
 await queue.put(x) # 向queue中放入item
async def consume(queue):
 while 1:
 item = await queue.get() # 等待从queue中获取item
 print('consume ', item)
 await asyncio.sleep(random())
 queue.task_done() # 通知queue当前item处理完毕 
async def run(n):
 queue = asyncio.Queue()
 consumer = asyncio.ensure_future(consume(queue))
 await produce(queue, n) # 等待生产者结束
 await queue.join() # 阻塞直到queue不为空
 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处
def aio_queue_run(n):
 loop = asyncio.get_event_loop()
 try:
 loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束
 finally:
 loop.close()
if __name__ == '__main__':
 aio_queue_run(5)

运行上面的代码,一种可能的输出如下:

produce 1
produce 2
consume 1
produce 3
produce 4
consume 2
produce 5
consume 3
consume 4
consume 5

爬取页面

async def page_download(urls, pages, flag):
 url_generator = urls
 async with aiohttp.ClientSession() as session:
 for url in url_generator:
  if flag.is_set():
  break
  await asyncio.sleep(uniform(delay - 0.5, delay + 1))
  logger.debug('crawling proxy web page {0}'.format(url))
  try:
  async with session.get(url, headers=headers, timeout=10) as response:
   page = await response.text()
   parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection
   await pages.put(parsed)
   url_generator.send(parsed) # 根据当前页面来获取下一页的地址
  except StopIteration:
  break
  except asyncio.TimeoutError:
  logger.error('crawling {0} timeout'.format(url))
  continue # TODO: use a proxy
  except Exception as e:
  logger.error(e)

使用aiohttp实现的网页爬取函数,大部分代理网站都可以使用上面的方法来爬取,对于使用js动态生成页面的网站可以使用selenium控制PhantomJS来爬取——本项目对爬虫的效率要求不高,代理网站的更新频率是有限的,不需要频繁的爬取,完全可以使用PhantomJS。

解析代理

最简单的莫过于用xpath来解析代理了,使用Chrome浏览器的话,直接通过右键就能获得选中的页面元素的xpath:

 Python实现的异步代理爬虫及代理池

安装Chrome的扩展“XPath Helper”就可以直接在页面上运行和调试xpath,十分方便:

 Python实现的异步代理爬虫及代理池

BeautifulSoup不支持xpath,使用lxml来解析页面,代码如下:

async def _parse_proxy(self, rule, page):
 ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合
 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合
 if not ips or not ports:
 logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'.
  format(len(ips), len(ports), rule.__rule_name__))
 return
 proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports)
 if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等
 filters = []
 for i, ft in enumerate(rule.filters_xpath):
  field = page.xpath(ft)
  if not field:
  logger.warning('{1} crawler could not get {0} field, please check the filter xpath'.
   format(rule.filters[i], rule.__rule_name__))
  continue
  filters.append(map(lambda x: x.text.strip(), field))
 filters = zip(*filters)
 selector = map(lambda x: x == rule.filters, filters)
 proxies = compress(proxies, selector)
for proxy in proxies:
await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中

爬虫规则

网站爬取、代理解析、滤等等操作的规则都是由各个代理网站的规则类定义的,使用元类和基类来管理规则类。基类定义如下:

class CrawlerRuleBase(object, metaclass=CrawlerRuleMeta):
 start_url = None
 page_count = 0
 urls_format = None
 next_page_xpath = None
 next_page_host = ''
 use_phantomjs = False
 phantomjs_load_flag = None
 filters = ()
 ip_xpath = None
 port_xpath = None
 filters_xpath = ()

各个参数的含义如下:

start_url(必需)

爬虫的起始页面。

ip_xpath(必需)

爬取IP的xpath规则。

port_xpath(必需)

爬取端口号的xpath规则。

page_count

爬取的页面数量。

urls_format

页面地址的格式字符串,通过urls_format.format(start_url, n)来生成第n页的地址,这是比较常见的页面地址格式。

next_page_xpathnext_page_host

由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。

use_phantomjs, phantomjs_load_flag

use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。

filters

过滤字段集合,可迭代类型。用于过滤代理。

爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。

元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。

目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的__init__.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.__subclasses__()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。

2. 检验部分

免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。

这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。

async def validate(self, proxies):
 logger.debug('validator started')
 while 1:
 proxy = await proxies.get()
 async with aiohttp.ClientSession() as session:
  try:
  real_proxy = 'http://' + proxy
  async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:
   self._conn.put(proxy)
  except Exception as e:
  logger.error(e)
 proxies.task_done()

3. server部分

使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页:

Python实现的异步代理爬虫及代理池

  • 访问http://host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080';
  • 访问http://host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";
  • 访问http://host:port/count来获取代理池的容量,如:'42'。

因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。

返回代理是通过aiohttp.web.Response(text=ip.decode('utf-8'))实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。

返回主页则不同,是通过aiohttp.web.Response(body=main_page_cache, content_type='text/html') ,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。

这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。

4. 运行

将整个代理池的功能分成了3个独立的部分:

proxypool

定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。

proxyvalidator

用于定期检验代理池中的代理,移除失效代理。

proxyserver

启动server。

这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:

; supervisord.conf
[unix_http_server]
file=/tmp/supervisor.sock 

[inet_http_server]  
port=127.0.0.1:9001 

[supervisord]
logfile=/tmp/supervisord.log 
logfile_maxbytes=5MB 
logfile_backups=10  
loglevel=debug  
pidfile=/tmp/supervisord.pid 
nodaemon=false  
minfds=1024   
minprocs=200   

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:proxyPool]
command=python /path/to/ProxyPool/run_proxypool.py  
redirect_stderr=true
stdout_logfile=NONE

[program:proxyValidator]
command=python /path/to/ProxyPool/run_proxyvalidator.py
redirect_stderr=true  
stdout_logfile=NONE

[program:proxyServer]
command=python /path/to/ProxyPool/run_proxyserver.py
autostart=false
redirect_stderr=true  
stdout_logfile=NONE

因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:

Python实现的异步代理爬虫及代理池

supervisod的官方文档说目前(版本3.3.1)不支持python3,但是我在使用过程中没有发现什么问题,可能也是由于我并没有使用supervisord的复杂功能,只是把它当作了一个简单的进程状态监控和启停工具了。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
Python读写Excel文件的实例
Nov 01 Python
Python中的一些陷阱与技巧小结
Jul 10 Python
python爬虫实战之最简单的网页爬虫教程
Aug 13 Python
Python基于回溯法子集树模板解决0-1背包问题实例
Sep 02 Python
Python3实现将本地JSON大数据文件写入MySQL数据库的方法
Jun 13 Python
使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法
Jun 22 Python
Python3利用print输出带颜色的彩色字体示例代码
Apr 08 Python
python 字典的打印实现
Sep 26 Python
pandas将多个dataframe以多个sheet的形式保存到一个excel文件中
Oct 10 Python
python中的itertools的使用详解
Jan 13 Python
python+opencv实现移动侦测(帧差法)
Mar 20 Python
python3+opencv 使用灰度直方图来判断图片的亮暗操作
Jun 02 Python
Python 专题一 函数的基础知识
Mar 16 #Python
python 专题九 Mysql数据库编程基础知识
Mar 16 #Python
Python实现树莓派WiFi断线自动重连的实例代码
Mar 16 #Python
Windows下安装python MySQLdb遇到的问题及解决方法
Mar 16 #Python
python Selenium爬取内容并存储至MySQL数据库的实现代码
Mar 16 #Python
python开发利器之ulipad的使用实践
Mar 16 #Python
离线安装Pyecharts的步骤以及依赖包流程
Apr 23 #Python
You might like
asp和php下textarea提交大量数据发生丢失的解决方法
2008/01/20 PHP
PHP+MYSQL实现用户的增删改查
2015/03/24 PHP
CodeIgniter配置之database.php用法实例分析
2016/01/20 PHP
Yii2框架中日志的使用方法分析
2017/05/22 PHP
PHP异常类及异常处理操作实例详解
2018/12/19 PHP
php输出反斜杠的实例方法
2019/09/19 PHP
javascript语句中的CDATA标签的意义
2007/05/09 Javascript
JS维吉尼亚密码算法实现代码
2010/11/09 Javascript
javascript处理table表格的代码
2010/12/06 Javascript
jquery实现弹出div,始终显示在屏幕正中间的简单实例
2014/03/08 Javascript
兼容Firefox的Javascript XSLT 处理XML文件
2014/12/31 Javascript
JavaScript中Object.prototype.toString方法的原理
2016/02/24 Javascript
Bootstrap导航条可点击和鼠标悬停显示下拉菜单的实现代码
2016/06/23 Javascript
JS判断输入的字符串是否是数字的方法(正则表达式)
2016/11/29 Javascript
漂亮实用的页面loading(加载)封装代码
2017/02/03 Javascript
原生js实现打字动画游戏
2017/02/04 Javascript
Vue2.0权限树组件实现代码
2017/08/29 Javascript
Angular中使用MathJax遇到的一些问题
2017/12/15 Javascript
vue组件name的作用小结
2018/05/23 Javascript
javascript json字符串到json对象转义问题
2019/01/22 Javascript
js属性对象的hasOwnProperty方法的使用
2021/02/05 Javascript
python3实现网络爬虫之BeautifulSoup使用详解
2018/12/19 Python
Windows下pycharm安装第三方库失败(通用解决方案)
2020/09/17 Python
唤醒头发毛囊的秘密武器:Grow Gorgeous
2016/08/28 全球购物
罗技英国官方网站:Logitech UK
2020/11/03 全球购物
读书心得体会
2013/12/28 职场文书
4s店总经理岗位职责
2013/12/31 职场文书
政法学院毕业生求职信
2014/02/28 职场文书
骨干教师考核方案
2014/05/09 职场文书
乔布斯斯坦福大学演讲稿
2014/05/23 职场文书
国家助学金感谢信
2015/01/21 职场文书
试用期转正工作总结2015
2015/05/28 职场文书
咖啡厅里的创业计划书
2019/08/21 职场文书
导游词之桂林山水
2019/09/20 职场文书
MySQL分库分表详情
2021/09/25 MySQL
防止web项目中的SQL注入
2021/12/06 MySQL