浅析Python OpenCV三种滤镜效果


Posted in Python onApril 11, 2022

前言

本篇文章要使用OpenCV、Numpy 和Math这3个工具包实现一个简单的滤镜编辑器。在这个滤镜编辑器中,包含了3种滤镜效果,它们分别是浮雕滤镜、雕刻滤镜和凸透镜滤镜。本篇文章将对目标图像(如图1所示)进行处理,使得目标图像分别呈现浮雕滤镜(如图2所示)、雕刻滤镜(如图3所示)和凸透镜滤镜(如图4所示)的视觉效果。

浅析Python OpenCV三种滤镜效果

浅析Python OpenCV三种滤镜效果

浅析Python OpenCV三种滤镜效果

浅析Python OpenCV三种滤镜效果

浮雕滤镜效果

为了实现浮雕滤镜效果,首先要把实现浮雕滤镜效果的原理搞清楚、弄明白。实现浮雕滤镜效果的原理如下所示:

  • 根据灰度图像中的某一个像素的像素值与其周围像素的像素值之间的差值,确定这个像素经过卷积处理后的像素值;

  • 由于边缘点的像素值与其周围像素的像素值之间的差值较大,经卷积处理后,导致这些边缘点较亮,从而达到凸显边缘的目的,进而形成浮雕状;

  • 为经卷积处理后的每一个像素加上一个灰度偏移值128,作为呈现浮雕滤镜效果的图像的底色。

明确了实现浮雕滤镜效果的原理后,再来学习一下实现浮雕滤镜效果的算法。实现浮雕滤镜效果的算法如下所示:

  • 对灰度图像中的每一个像素进行卷积处理;

  • 实现浮雕滤镜效果的卷积核算子需采用如下矩阵:

[[1, 0], [0, -1]]

掌握了实现浮雕滤镜效果的原理和算法后,下面开始编写用于实现浮雕滤镜效果的方法,即fuDiao()方法。fuDiao()方法是一个自定义的、有参且有返回值的方法,fuDiao()方法的语法格式如下所示:

def fuDiao(img):
    ……# 省略方法体中的代码
    return canvas

参数说明:

 img:与目标图像对应的灰度图像。

返回值说明:

canvas:画布,用于呈现浮雕滤镜效果的图像。

那么,fuDiao()方法被省略的代码各自发挥怎样的作用?此外,被省略的代码又是那些呢?

先要明确fuDiao()方法中被省略的代码各自发挥的作用是什么:

因为用于实现浮雕滤镜效果的卷积核算子是一个二维矩阵,所以需要使用Numpy工具包中的array()方法创建这个二维矩阵。关键代码如下所示:

kernel = np.array([[1, 0], [0, -1]])

分别获取灰度图像中像素的行数和列数。关键代码如下所示:

row = img.shape[0]
col = img.shape[1]

根据灰度图像中像素的行数和列数,创建一个等高、等宽的,纯黑色的画布。关键代码如下所示:

canvas = np.zeros([row, col], dtype=np.uint8)

根据横、纵坐标,使用嵌套的for循环得到灰度图像中的每一个像素。关键代码如下所示:

for i in range(row - 1):
for j in range(col - 1):

使用实现浮雕滤镜效果的卷积核算子,对灰度图像中的每一个像素进行卷积处理,并且为经卷积处理后的每一个像素加上一个灰度偏移值128。关键代码如下所示:

new_value = np.sum(img[i:i + 2, j:j + 2] * kernel) + 128

对于经卷积处理且加上一个灰度偏移值后的每一个像素的像素值,如果大于255,那么等于255;如果小于0,那么等于0。关键代码如下所示:

if new_value > 255:
   new_value = 255
   elif new_value < 0:
      new_value = 0
  else:
    pass

把经过比较后的每一个像素的像素值根据坐标赋值给画布对应位置上的像素。关键代码如下所示:

canvas[i, j] = new_value

结合fuDiao()方法中被省略的代码和它们各自发挥的作用,就能够迅速完成fuDiao()方法的编写。fuDiao()方法的代码如下所示:

def fuDiao(img):
      kernel = np.array([[1, 0], [0, -1]])
      row = img.shape[0]
      col = img.shape[1]
      canvas = np.zeros([row, col], dtype=np.uint8)
      for i in range(row - 1):
         for j in range(col - 1):
             new_value = np.sum(img[i:i + 2, j:j + 2] * kernel) + 128
             if new_value > 255:
                 new_value = 255
              elif new_value < 0:
                 new_value = 0
              else:
                  pass
             canvas[i, j] = new_value
      return canvas

雕刻滤镜效果

实现雕刻滤镜效果的原理与实现浮雕滤镜效果的原理大致相同,实现雕刻滤镜效果的原理如下所示:

  • 根据灰度图像中的某一个像素的像素值与其周围像素的像素值之间的差值,确定这个像素经过卷积处理后的像素值;

  • 由于边缘点的像素值与其周围像素的像素值之间的差值较大,经卷积处理后,导致这些边缘点较暗,从而达到凹陷边缘的目的,进而形成雕刻状;

  • 为经卷积处理后的每一个像素加上一个灰度偏移值128,作为呈现雕刻滤镜效果的图像的底色。

虽然实现雕刻滤镜效果的原理与实现浮雕滤镜效果的原理大致相同,但是实现雕刻滤镜效果的算法与实现浮雕滤镜效果的算法大不相同。实现雕刻滤镜效果的算法如下所示:

  • 对灰度图像中的每一个像素进行卷积处理;

  • 实现雕刻滤镜效果的卷积核算子需采用如下矩阵:

[[-1, 0],
[0, 1]]

掌握了实现雕刻滤镜效果的原理和算法后,下面开始编写用于实现雕刻滤镜效果的方法,即diaoKe()方法。与fuDiao()方法相同,diaoKe()方法也是一个自定义的、有参且有返回值的方法,diaoKe()方法的语法格式如下所示:

def diaoKe(img):
   ……# 省略方法体中的代码
    return canvas

参数说明:

img:与目标图像对应的灰度图像。

返回值说明:

canvas:画布,用于呈现雕刻滤镜效果的图像。

diaoKe()方法被省略的代码与fuDiao()方法被省略的代码大同小异,首先明确下diaoKe()方法中被省略的代码各自发挥的作用是什么:

用于实现雕刻滤镜效果的卷积核算子与用于实现浮雕滤镜效果的卷积核算子虽然不同,但也是一个二维矩阵,因此需要使用Numpy工具包中的array()方法创建这个二维矩阵。关键代码如下所示:

kernel = np.array([[-1, 0], [0, 1]])

分别获取灰度图像中像素的行数和列数。关键代码如下所示:

row = img.shape[0]
col = img.shape[1]

根据灰度图像中像素的行数和列数,创建一个等高、等宽的,纯黑色的画布。关键代码如下所示:

canvas = np.zeros([row, col], dtype=np.uint8)

根据横、纵坐标,使用嵌套的for循环得到灰度图像中的每一个像素。关键代码如下所示:

for i in range(row - 1):
for j in range(col - 1):

使用实现雕刻滤镜效果的卷积核算子,对灰度图像中的每一个像素进行卷积处理,并且为经卷积处理后的每一个像素加上一个灰度偏移值128。关键代码如下所示:

new_value = np.sum(img[i:i + 2, j:j + 2] * kernel) + 128

对于经卷积处理且加上一个灰度偏移值后的每一个像素的像素值,如果大于255,那么等于255;如果小于0,那么等于0。关键代码如下所示:

if new_value > 255:
      new_value = 255
  elif new_value < 0:
      new_value = 0
  else:
      pass

把经过比较后的每一个像素的像素值根据坐标赋值给画布对应位置上的像素。关键代码如下所示:

canvas[i, j] = new_value

结合diaoKe()方法中被省略的代码和它们各自发挥的作用,就能够迅速完成diaoKe()方法的编写。diaoKe()方法的代码如下所示:

def diaoKe(img):
      kernel = np.array([[-1, 0], [0, 1]])
      row = img.shape[0]
      col = img.shape[1]
      canvas = np.zeros([row, col], dtype=np.uint8)
      for i in range(row - 1):
          for j in range(col - 1):
              new_value = np.sum(img[i:i + 2, j:j + 2] * kernel) + 128
              if new_value > 255:
                  new_value = 255
              elif new_value < 0:
                  new_value = 0
              else:
                  pass
              canvas[i, j] = new_value
      return canvas

凸透镜滤镜效果

所谓凸透镜滤镜效果,相当于用户使用凸透镜观察一幅图像而成的视觉效果。实现凸透镜滤镜效果的原理与实现浮雕滤镜效果的原理和实现雕刻滤镜效果的原理大不相同。下面将着重对实现凸透镜滤镜效果的原理进行讲解:

  • 当使用凸透镜中心观察一幅图像时,被观察的图像区域将按照一定比例进行放大;相应地,这个区域的周围区域将被压缩;

  • 为了让放大后的图像区域看起来和谐自然,这些被压缩的周围区域要保持连续性。

明确了实现凸透镜滤镜效果的原理后,再来学习一下实现凸透镜滤镜效果的算法。实现凸透镜滤镜效果的算法如下所示:

  • 根据目标图像的宽、高确定凸透镜的半径;

  • 选择一个凸函数作为映射函数;

如果目标图像中的某一个像素与目标图像中心之间的距离的平方不大于凸透镜的半径的平方(两个整数进行比较,保证比较结果的精确度),就使用映射函数对这个像素的横、纵坐标进行映射处理。

掌握了实现凸透镜滤镜效果的原理和算法后,下面开始编写用于实现凸透镜滤镜效果的方法,即tuTouJing()方法。与fuDiao()方法和diaoKe()方法相同,tuTouJing()方法也是一个自定义的、有参且有返回值的方法,tuTouJing()方法的语法格式如下所示:

def tuTouJing(img):
    ……# 省略方法体中的代码
    return canvas

参数说明:

 img:目标图像。

返回值说明:

canvas:画布,用于呈现凸透镜滤镜效果的图像。

先要明确tuTouJing()方法中被省略的代码各自发挥的作用是什么:

分别获取目标图像中像素的行数和列数以及目标图像的通道数。关键代码如下所示:

row = img.shape[0]
col = img.shape[1]
channel = img.shape[2]

根据目标图像中像素的行数和列数以及目标图像的通道数,创建一个等高、等宽、等通道数的,纯黑色的画布。关键代码如下所示:

canvas = np.zeros([row, col, channel], dtype=np.uint8)

根据目标图像中像素的行数和列数,分别获取目标图像中心的横、纵坐标。关键代码如下所示:

center_x = row/2
center_y = col/2

比较目标图像中心的横、纵坐标的大小,把较小的数值作为凸透镜的半径。关键代码如下所示:

radius = min(center_x, center_y)

根据横、纵坐标,使用嵌套的for循环得到目标图像中的每一个像素。关键代码如下所示:

for i in range(row):
for j in range(col):

计算目标图像中的每一个像素与目标图像中心之间的距离的平方和距离。关键代码如下所示:

distance = ((i-center_x) * (i-center_x) + (j-center_y) * (j-center_y))
new_dist = math.sqrt(distance)

把目标图像中的每一个像素的像素值根据坐标赋值给画布对应位置上的像素。关键代码如下所示:

canvas[i,j,:] = img[i, j, :]

如果目标图像中的某一个像素与目标图像中心之间的距离的平方不大于凸透镜的半径的平方,就使用映射函数对这个像素的横、纵坐标进行映射处理。关键代码如下所示:

if distance <= radius**2:
new_i = np.int(np.floor(new_dist * (i-center_x) / radius + center_x))
new_j = np.int(np.floor(new_dist * (j-center_y) / radius + center_y))

把经过映射处理后的每一个像素的像素值根据坐标赋值给画布对应位置上的像素。关键代码如下所示:

canvas[i,j,:] = img[new_i, new_j, :]

结合tuTouJing()方法中被省略的代码和它们各自发挥的作用,就能够迅速完成tuTouJing()方法的编写。tuTouJing()方法的代码如下所示:

def tuTouJing(img):
      row = img.shape[0]
      col = img.shape[1]
      channel = img.shape[2]
      canvas = np.zeros([row, col, channel], dtype=np.uint8)
      center_x = row/2
      center_y = col/2
      radius = min(center_x, center_y)
      for i in range(row):
          for j in range(col):
              distance = ((i-center_x) * (i-center_x) + (j-center_y) * (j-center_y))
              new_dist = math.sqrt(distance)
              canvas[i,j,:] = img[i, j, :]
              if distance <= radius**2:
                  new_i = np.int(np.floor(new_dist * (i-center_x) / radius + center_x))
                  new_j = np.int(np.floor(new_dist * (j-center_y) / radius + center_y))
                  canvas[i,j,:] = img[new_i, new_j, :]
      return canvas
Python 相关文章推荐
python 域名分析工具实现代码
Jul 15 Python
pandas 使用apply同时处理两列数据的方法
Apr 20 Python
python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别
Jun 04 Python
Python绘制正余弦函数图像的方法
Aug 28 Python
Python之inspect模块实现获取加载模块路径的方法
Oct 16 Python
Python中filter与lambda的结合使用详解
Dec 24 Python
Jupyter notebook设置背景主题,字体大小及自动补全代码的操作
Apr 13 Python
python实现在线翻译
Jun 18 Python
有关pycharm登录github时有的时候会报错connection reset的问题
Sep 15 Python
Django通过设置CORS解决跨域问题
Nov 26 Python
用python批量下载apk
Dec 29 Python
Python数据分析入门之教你怎么搭建环境
May 13 Python
实战Python爬虫爬取酷我音乐
用PYTHON去计算88键钢琴的琴键频率和音高
python图像处理 PIL Image操作实例
Apr 09 #Python
Python Pytorch查询图像的特征从集合或数据库中查找图像
Python实现科学占卜 让视频自动打码
Python自动化工具之实现Excel转Markdown表格
Python加密技术之RSA加密解密的实现
Apr 08 #Python
You might like
PHP 和 MySQL 基础教程(一)
2006/10/09 PHP
PHP 验证码的实现代码
2011/07/17 PHP
Drupal简体中文语言包安装教程
2014/09/27 PHP
Thinkphp结合ajaxFileUpload实现异步图片传输示例
2017/03/13 PHP
PHP使用JpGraph绘制折线图操作示例【附源码下载】
2019/10/18 PHP
Javascript insertAfter() 实现函数代码
2011/10/12 Javascript
jquery事件机制扩展插件 jquery鼠标右键事件
2011/12/21 Javascript
对比分析json及XML
2014/11/28 Javascript
HTML,CSS,JavaScript速查表推荐
2014/12/02 Javascript
nodejs调用cmd命令实现复制目录
2015/05/04 NodeJs
基于Bootstrap使用jQuery实现输入框组input-group的添加与删除
2016/05/03 Javascript
js流动式效果显示当前系统时间
2016/05/16 Javascript
jQuery中实现prop()函数控制多选框(全选,反选)
2016/08/19 Javascript
学习使用bootstrap的modal和carousel
2016/12/09 Javascript
vue组件父子间通信之综合练习(聊天室)
2017/11/07 Javascript
Vue实现一个无限加载列表功能
2018/11/13 Javascript
vue模式history下在iis中配置流程
2019/04/17 Javascript
详解微信小程序开发(项目从零开始)
2019/06/06 Javascript
python使用7z解压软件备份文件脚本分享
2014/02/21 Python
python使用phoenixdb操作hbase的方法示例
2019/02/28 Python
Django和Flask框架优缺点对比
2019/10/24 Python
关于keras.layers.Conv1D的kernel_size参数使用介绍
2020/05/22 Python
Python代码注释规范代码实例解析
2020/08/14 Python
WoolOvers爱尔兰:羊绒、羊毛和棉针织品
2017/01/04 全球购物
美国嘻哈文化生活方式品牌:GLD
2018/04/15 全球购物
欧洲最古老的鞋厂:Peter Kaiser
2019/11/05 全球购物
家具促销活动方案
2014/02/16 职场文书
李敖北大演讲稿
2014/05/24 职场文书
公司保洁员岗位职责
2015/02/13 职场文书
求职自荐信怎么写
2015/03/04 职场文书
2016秋季校长开学典礼致辞
2015/11/26 职场文书
高一军训口号
2015/12/25 职场文书
写好求职信的技巧解密
2019/05/14 职场文书
HTML速写之Emmet语法规则的实现
2021/04/07 HTML / CSS
详解Oracle数据库中自带的所有表结构(sql代码)
2021/11/20 Oracle
分享3个非常实用的 Python 模块
2022/03/03 Python