教你使用TensorFlow2识别验证码


Posted in Python onJune 11, 2021

验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册、灌水、发垃圾广告等等 。

数据集来源:https://www.kaggle.com/fournierp/captcha-version-2-images

图片是5个字母的单词,可以包含数字。这些图像应用了噪声(模糊和一条线)。它们是200 x 50 PNG。我们的任务是尝试制作光学字符识别算法的模型。

教你使用TensorFlow2识别验证码

在数据集中存在的验证码png图片,对应的标签就是图片的名字。

import os
import numpy as np
import pandas as pd
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
# imgaug 图片数据增强
import imgaug.augmenters as iaa
import tensorflow as tf
# Conv2D MaxPooling2D Dropout Flatten Dense BN  GAP
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Layer, BatchNormalization, GlobalAveragePooling2D 
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import Model, Input 
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
# 图片处理器
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import plotly.express as px
import plotly.graph_objects as go
import plotly.offline as pyo
pyo.init_notebook_mode()

对数据进行一个简单的分析,统计图像中大约出现了什么样的符号。

# 数据路径
DIR = '../input/captcha-version-2-images/samples/samples'
# 存储验证码的标签
captcha_list = []
characters = {}
for captcha in os.listdir(DIR):
    captcha_list.append(captcha)
    # 每张验证码的captcha_code
    captcha_code = captcha.split(".")[0]
    for i in captcha_code:
        # 遍历captcha_code 
        characters[i] = characters.get(i, 0) +1
symbols = list(characters.keys())
len_symbols = len(symbols)
print(f'图像中只使用了{len_symbols}符号')

plt.bar(*zip(*characters.items()))
plt.title('Frequency of symbols')
plt.show()

教你使用TensorFlow2识别验证码

如何提取图像的数据建立X,y??

# 如何提取图像 建立 model  X 的shape  1070 * 50 * 200 * 1 
# y的shape 5 * 1070 * 19
 
for i, captcha in enumerate(captcha_list):
    captcha_code = captcha.split('.')[0]
    # cv2.IMREAD_GRAYSCALE 灰度图
    captcha_cv2 = cv2.imread(os.path.join(DIR, captcha),cv2.IMREAD_GRAYSCALE)
    # 缩放
    captcha_cv2 = captcha_cv2 / 255.0
    # print(captcha_cv2.shape) (50, 200) 
    # 将captcha_cv2的(50, 200) 切换成(50, 200, 1)
    captcha_cv2 = np.reshape(captcha_cv2, img_shape)
    # (5,19)
    targs = np.zeros((len_captcha, len_symbols))
    
    for a, b in enumerate(captcha_code):
        targs[a, symbols.index(b)] = 1
    X[i] = captcha_cv2
    y[:, i] = targs

print("shape of X:", X.shape)
print("shape of y:", y.shape)

输出如下

print("shape of X:", X.shape)
print("shape of y:", y.shape)

通过Numpy中random 随机选择数据,划分训练集和测试集

# 生成随机数
from numpy.random import default_rng

rng = default_rng(seed=1)
test_numbers = rng.choice(1070, size=int(1070*0.3), replace=False)
X_test = X[test_numbers]
X_full = np.delete(X, test_numbers,0)
y_test = y[:,test_numbers]
y_full = np.delete(y, test_numbers,1)

val_numbers = rng.choice(int(1070*0.7), size=int(1070*0.3), replace=False)

X_val = X_full[val_numbers]
X_train = np.delete(X_full, val_numbers,0)
y_val = y_full[:,val_numbers]
y_train = np.delete(y_full, val_numbers,1)

在此验证码数据中,容易出现过拟合的现象,你可能会想到添加更多的新数据、 添加正则项等, 但这里使用数据增强的方法,特别是对于机器视觉的任务,数据增强技术尤为重要。

常用的数据增强操作:imgaug库。imgaug是提供了各种图像增强操作的python库 https://github.com/aleju/imgaug

imgaug几乎包含了所有主流的数据增强的图像处理操作, 增强方法详见github

# Sequential(C, R)	 尺寸增加了5倍,
# 选取一系列子增强器C作用于每张图片的位置,第二个参数表示是否对每个batch的图片应用不同顺序的Augmenter list     # rotate=(-8, 8)  旋转
# iaa.CropAndPad  截取(crop)或者填充(pad),填充时,被填充区域为黑色。
# px: 想要crop(negative values)的或者pad(positive values)的像素点。
# (top, right, bottom, left)
# 当pad_mode=constant的时候选择填充的值
aug =iaa.Sequential([iaa.CropAndPad(
    px=((0, 10), (0, 35), (0, 10), (0, 35)),
    pad_mode=['edge'],
    pad_cval=1
),iaa.Rotate(rotate=(-8,8))])

X_aug_train = None
y_aug_train = y_train
for i in range(40):
    X_aug = aug(images = X_train)
    if X_aug_train is not None:
        X_aug_train = np.concatenate([X_aug_train, X_aug], axis = 0)
        y_aug_train = np.concatenate([y_aug_train, y_train], axis = 1)
    else:
        X_aug_train = X_aug

让我们看看一些数据增强的训练图像。

fig, ax = plt.subplots(nrows=2, ncols =5, figsize = (16,16))
for i in range(10):
    index = np.random.randint(X_aug_train.shape[0])
    ax[i//5][i%5].imshow(X_aug_train[index],cmap='gray')

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

这次使用函数式API创建模型,函数式API是创建模型的另一种方式,它具有更多的灵活性,包括创建更为复杂的模型。

需要定义inputsoutputs

#函数式API模型创建
captcha = Input(shape=(50,200,channels))
x = Conv2D(32, (5,5),padding='valid',activation='relu')(captcha)
x = MaxPooling2D((2,2),padding='same')(x)
x = Conv2D(64, (3,3),padding='same',activation='relu')(x)
x = MaxPooling2D((2,2),padding='same')(x)
x = Conv2D(128, (3,3),padding='same',activation='relu')(x)
maxpool = MaxPooling2D((2,2),padding='same')(x)
outputs = []
for i in range(5):
    x = Conv2D(256, (3,3),padding='same',activation='relu')(maxpool)
    x = MaxPooling2D((2,2),padding='same')(x)
    x = Flatten()(x)
    x = Dropout(0.5)(x)
    x = BatchNormalization()(x)
    x = Dense(64, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = BatchNormalization()(x)
    x = Dense(len_symbols , activation='softmax' , name=f'char_{i+1}')(x)
    outputs.append(x)
    
model = Model(inputs = captcha , outputs=outputs)
# ReduceLROnPlateau更新学习率
reduce_lr = ReduceLROnPlateau(patience =3, factor = 0.5,verbose = 1)
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0005), metrics=["accuracy"])
# EarlyStopping用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在减小
earlystopping = EarlyStopping(monitor ="val_loss",  
                             mode ="min", patience = 10,
                              min_delta = 1e-4,
                             restore_best_weights = True) 

history = model.fit(X_train, [y_train[i] for i in range(5)], batch_size=32, epochs=30, verbose=1, validation_data = (X_val, [y_val[i] for i in range(5)]), callbacks =[earlystopping,reduce_lr])

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

下面对model进行一个测试和评估。

score = model.evaluate(X_test,[y_test[0], y_test[1], y_test[2], y_test[3], y_test[4]],verbose=1)
metrics = ['loss','char_1_loss', 'char_2_loss', 'char_3_loss', 'char_4_loss', 'char_5_loss', 'char_1_acc', 'char_2_acc', 'char_3_acc', 'char_4_acc', 'char_5_acc']

for i,j in zip(metrics, score):
    print(f'{i}: {j}')

具体输出如下:

11/11 [==============================] - 0s 11ms/step - loss: 0.7246 - char_1_loss: 0.0682 - char_2_loss: 0.1066 - char_3_loss: 0.2730 - char_4_loss: 0.2636 - char_5_loss: 0.0132 - char_1_accuracy: 0.9844 - char_2_accuracy: 0.9657 - char_3_accuracy: 0.9408 - char_4_accuracy: 0.9626 - char_5_accuracy: 0.9938
loss: 0.7246273756027222
char_1_loss: 0.06818050146102905
char_2_loss: 0.10664034634828568
char_3_loss: 0.27299806475639343
char_4_loss: 0.26359987258911133
char_5_loss: 0.013208594173192978
char_1_acc: 0.9844236969947815
char_2_acc: 0.9657320976257324
char_3_acc: 0.940809965133667
char_4_acc: 0.9626168012619019
char_5_acc: 0.9937694668769836

字母1到字母5的精确值都大于

绘制loss和score

metrics_df = pd.DataFrame(history.history)

columns = [col for col in metrics_df.columns if 'loss' in col and len(col)>8]

fig = px.line(metrics_df, y = columns)
fig.show()

教你使用TensorFlow2识别验证码

plt.figure(figsize=(15,8))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right',prop={'size': 10})
plt.show()

教你使用TensorFlow2识别验证码

# 预测数据
def predict(captcha):
    captcha = np.reshape(captcha , (1, 50,200,channels))
    result = model.predict(captcha)
    result = np.reshape(result ,(5,len_symbols))
    # 取出最大预测中的输出
    label = ''.join([symbols[np.argmax(i)] for i in result])
    return label
    
predict(X_test[2])
# 25277

下面预测所有的数据

actual_pred = []

for i in range(X_test.shape[0]):
    actual = ''.join([symbols[i] for i in (np.argmax(y_test[:, i],axis=1))])
    pred =  predict(X_test[i])
    actual_pred.append((actual, pred))
print(actal_pred[:10])

输出如下:

[('n4b4m', 'n4b4m'), ('42nxy', '42nxy'), ('25257', '25277'), ('cewnm', 'cewnm'), ('w46ep', 'w46ep'), ('cdcb3', 'edcb3'), ('8gf7n', '8gf7n'), ('nny5e', 'nny5e'), ('gm2c2', 'gm2c2'), ('g7fmc', 'g7fmc')]

sameCount = 0
diffCount = 0
letterDiff = {i:0 for i in range(5)}
incorrectness = {i:0 for i in range(1,6)}
for real, pred in actual_pred:
    # 预测和输出相同
    if real == pred:
        sameCount += 1
    else:
        # 失败
        diffCount += 1
        # 遍历
        incorrectnessPoint = 0
        for i in range(5):
            if real[i] != pred[i]:
                letterDiff[i] += 1
                incorrectnessPoint += 1
        incorrectness[incorrectnessPoint] += 1


x = ['True predicted', 'False predicted']
y = [sameCount, diffCount]

fig = go.Figure(data=[go.Bar(x = x, y = y)])
fig.show()

在预测数据中,一共有287个数据预测正确。

教你使用TensorFlow2识别验证码

在这里,我们可以看到出现错误到底是哪一个index。

x1 = ["Character " + str(x) for x in range(1, 6)]
    
fig = go.Figure(data=[go.Bar(x = x1, y = list(letterDiff.values()))])
fig.show()

教你使用TensorFlow2识别验证码

为了计算每个单词的错误数,绘制相关的条形图。

x2 = [str(x) + " incorrect" for x in incorrectness.keys()]
y2 = list(incorrectness.values())

fig = go.Figure(data=[go.Bar(x = x2, y = y2)])
fig.show()

教你使用TensorFlow2识别验证码

下面绘制错误的验证码图像,并标准正确和错误的区别。

fig, ax = plt.subplots(nrows = 8, ncols=4,figsize = (16,20))
count = 0
for i, (actual , pred) in enumerate(actual_pred):
    if actual != pred:
        img = X_test[i]
        try:
            ax[count//4][count%4].imshow(img, cmap = 'gray')
            ax[count//4][count%4].title.set_text(pred + ' - ' + actual)
            count += 1
        except:
            pass

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

到此这篇关于教你使用TensorFlow2识别验证码的文章就介绍到这了,更多相关TensorFlow2识别验证码内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中使用HTMLParser解析html实例
Feb 08 Python
python妙用之编码的转换详解
Apr 21 Python
Python中的pygal安装和绘制直方图代码分享
Dec 08 Python
基于pandas数据样本行列选取的方法
Apr 20 Python
Python实现读取txt文件并转换为excel的方法示例
May 17 Python
python3 爬取图片的实例代码
Nov 06 Python
Python编写合并字典并实现敏感目录的小脚本
Feb 26 Python
python实现名片管理系统项目
Apr 26 Python
Python Flask 搭建微信小程序后台详解
May 06 Python
python 动态迁移solr数据过程解析
Sep 04 Python
python保留小数位的三种实现方法
Jan 07 Python
opencv python在视屏上截图功能的实现
Mar 05 Python
Python使用OpenCV和K-Means聚类对毕业照进行图像分割
Python3中PyQt5简单实现文件打开及保存
Jun 10 #Python
Python selenium的这三种等待方式一定要会!
python实现股票历史数据可视化分析案例
Python如何识别银行卡卡号?
使用python+pygame开发消消乐游戏附完整源码
Python数据可视化之基于pyecharts实现的地理图表的绘制
You might like
PHP怎样调用MSSQL的存储过程
2006/10/09 PHP
php5新改动之短标记启用方法
2008/09/11 PHP
删除无限分类并同时删除它下面的所有子分类的方法
2010/08/08 PHP
PHP中=赋值操作符对不同数据类型的不同行为
2011/01/02 PHP
php文件怎么打开 如何执行php文件
2011/12/21 PHP
jquery获取多个checkbox的值异步提交给php的方法
2015/06/24 PHP
Javascript 判断 object 的特定类转载
2007/02/01 Javascript
javascript 面向对象思想 附源码
2009/07/07 Javascript
JavaScript子窗口ModalDialog中操作父窗口对像
2012/12/11 Javascript
JavaScript类型检测之typeof 和 instanceof 的缺陷与优化
2016/01/13 Javascript
关于微信中a链接无法跳转问题
2016/08/02 Javascript
漂亮! js实现颜色渐变效果
2016/08/12 Javascript
EasyUI折叠表格层次显示detailview详解及实例
2016/12/28 Javascript
JS对象深度克隆实例分析
2017/03/16 Javascript
微信小程序中的canvas 文字断行和省略号显示功能的处理方法
2018/11/14 Javascript
vue-cli3 DllPlugin 提取公用库的方法
2019/04/24 Javascript
微信小程序新闻网站详情页实例代码
2020/01/10 Javascript
vue 将多个过滤器封装到一个文件中的代码详解
2020/09/05 Javascript
vue2和vue3的v-if与v-for优先级对比学习
2020/10/10 Javascript
[58:59]完美世界DOTA2联赛PWL S3 access vs CPG 第一场 12.13
2020/12/16 DOTA
python3.7.0的安装步骤
2018/08/27 Python
对python以16进制打印字节数组的方法详解
2019/01/24 Python
python 实现turtle画图并导出图片格式的文件
2019/12/07 Python
Python loguru日志库之高效输出控制台日志和日志记录
2020/03/07 Python
Jupyter Notebook打开任意文件夹操作
2020/04/14 Python
装上这 14 个插件后,PyCharm 真的是无敌的存在
2021/01/11 Python
基于HTML5 的人脸识别活体认证的实现方法
2016/06/22 HTML / CSS
新西兰领先的内衣店:Bendon Lingerie新西兰
2018/07/11 全球购物
葡萄牙航空官方网站:TAP Air Portugal
2019/10/31 全球购物
护理学毕业生求职信
2013/11/14 职场文书
经典演讲稿范文
2013/12/30 职场文书
粗加工管理制度
2014/02/04 职场文书
《七颗钻石》教学反思
2014/02/28 职场文书
会计学毕业生求职信
2014/06/25 职场文书
群众路线个人整改措施
2014/10/24 职场文书
2014年工作总结及2015工作计划
2014/12/12 职场文书