python开发实时可视化仪表盘的示例


Posted in Python onMay 07, 2021

本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

这是我的系列教程「Python+Dash快速web应用开发」的第十五期,在前面的一系列教程中,我们针对Dash中的各种常用基础概念作了比较详细的介绍,如果前面的教程你有认真学习,那么相信到今天你已经有能力开发初具规模的Dash应用了。

而在Dash生态中还有一系列功能比较特殊但又非常实用的部件,今天的文章我们就来学习这些常用的「特殊部件」。

2 Dash中的常用特殊功能部件

2.1 用Store()来存储数据

在dash_core_components中有着很多功能特殊的部件,Store()就是其中之一,它的功能十分的简单,就是用来存储数据的,譬如存储一些数值、字符串等基础数据类型或者把Python中的列表、字典等作为json格式数据存进去。

Store()的主要参数/属性除了id之外,还有:

data,代表其所存放的数据,也是我们编写回调函数时关注的属性;

modified_timestamp,用于记录最后一次data属性被修改的时间戳,通常用不到;

storage_type,用于设置存储数据的生命周期,有3种,storage_type='memory'时生命周期最短,只要页面一刷新,data就会恢复初始状态;storage_type='session'时,只有浏览器被关闭时data才会被重置;而最后一种storage_type='local'时,会将数据存储在本地缓存中,只有手动清除,data才会被重置。

话不多说,直接来看一个直观的例子:

app1.py

import dash
import dash_core_components as dcc
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        dbc.Form(
            [
                dbc.FormGroup(
                    [
                        dbc.Label('storage = "memory"时'),
                        dbc.Input(id='input-memory1', autoComplete='off'),
                        dbc.Input(id='input-memory2', style={'margin-top': '3px'}),
                        dcc.Store(id='data-in-memory')
                    ]
                ),
                dbc.FormGroup(
                    [
                        dbc.Label('storage = "session"时'),
                        dbc.Input(id='input-session1', autoComplete='off'),
                        dbc.Input(id='input-session2', style={'margin-top': '3px'}),
                        dcc.Store(id='data-in-session', storage_type='session')
                    ]
                ),
                dbc.FormGroup(
                    [
                        dbc.Label('storage = "local"时'),
                        dbc.Input(id='input-local1', autoComplete='off'),
                        dbc.Input(id='input-local2', style={'margin-top': '3px'}),
                        dcc.Store(id='data-in-local', storage_type='local')
                    ]
                ),
            ]
        )
    ],
    style={
        'margin-top': '100px',
        'max-width': '600px'
    }
)


# memory对应回调
@app.callback(
    Output('data-in-memory', 'data'),
    Input('input-memory1', 'value')
)
def data_in_memory_save_data(value):
    if value:
        return value

    return dash.no_update


@app.callback(
    Output('input-memory2', 'placeholder'),
    Input('data-in-memory', 'data')
)
def data_in_memory_placeholder(data):
    if data:
        return data

    return dash.no_update


# session对应回调
@app.callback(
    Output('data-in-session', 'data'),
    Input('input-session1', 'value')
)
def data_in_session_save_data(value):
    if value:
        return value

    return dash.no_update


@app.callback(
    Output('input-session2', 'placeholder'),
    Input('data-in-session', 'data')
)
def data_in_session_placeholder(data):
    if data:
        return data

    return dash.no_update


# local对应回调
@app.callback(
    Output('data-in-local', 'data'),
    Input('input-local1', 'value')
)
def data_in_local_save_data(value):
    if value:
        return value

    return dash.no_update


@app.callback(
    Output('input-local2', 'placeholder'),
    Input('data-in-local', 'data')
)
def data_in_local_placeholder(data):
    if data:
        return data

    return dash.no_update


if __name__ == '__main__':
    app.run_server(debug=True)

可以看到,不同storage参数对应的数据,生命周期有着很大的区别:

python开发实时可视化仪表盘的示例

就是凭借着这种自由存储数据的特性,Store()可以帮助我们完成很多非常实用的功能,我们会在本文最后的例子里进行展示。

2.2 用Interval()实现周期性回调

同样是dash_core_components中的组件,Interval()的功能也很有意思,它可以帮助我们实现周期性自动回调,譬如开发一个实时股价系统,每隔一段时间就从后台获取最新的数据,无需我们手动刷新页面,其主要的参数/属性有:

n_intervals,Interval()的核心属性,所谓的自动更新实际上就是自动对n_intervals的递增过程;

interval,数值型,用于设置每隔多少毫秒对n_intervals的值进行一次递增,默认为1000即1秒;

max_intervals,int型,用于设置在经历多少次递增后,不再继续自动更新,默认为-1即不限制;

disabled,bool型,默认为False,用于设置是否停止递增更新过程,如果说max_intervals控制的过程是for循环的话,disabled就是while循环,我们可以利用它自行编写逻辑在特定的条件下停止Interval()的递增过程。

下面我们从一个伪造数据的股价实时更新系统例子中进一步理解Interval()的作用:

app2.py

import dash
import numpy as np
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output, State

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        html.P(
            [
                html.Strong('贵州茅台(600519)'),
                '最新股价:',
                html.Span('2108.94', id='latest-price')
            ]
        ),
        dcc.Interval(id='demo-interval', interval=1000)
    ],
    style={
        'margin-top': '100px'
    }
)


@app.callback(
    [Output('latest-price', 'children'),
     Output('latest-price', 'style')],
    Input('demo-interval', 'n_intervals'),
    State('latest-price', 'children')
)
def fake_price_generator(n_intervals, latest_price):
    fake_price = float(latest_price) + np.random.normal(0, 0.1)

    if fake_price > float(latest_price):
        return f'{fake_price:.2f}', {'color': 'red', 'background-color': 'rgba(195, 8, 26, 0.2)'}

    elif fake_price < float(latest_price):
        return f'{fake_price:.2f}', {'color': 'green', 'background-color': 'rgba(50, 115, 80, 0.2)'}

    return f'{fake_price:.2f}', {'background-color': 'rgba(113, 120, 117, 0.2)'}


if __name__ == '__main__':
    app.run_server(debug=True)

哈哈,是不是非常的实用~

python开发实时可视化仪表盘的示例

2.3 利用ColorPicker()进行交互式色彩设置

接下来我们要介绍的这个很有意思的部件来自Dash的官方依赖dash_daq,它并不是自带的,我们需要用pip进行安装。

ColorPicker()的功能是渲染出一个交互式的色彩选择部件,使得我们可以更方便更直观地选择色彩值,其主要参数/属性有:

label,字符串或字典,若只传入字符串,则传入的文字会作为渲染出的色彩选择器的标题,若传入字典,其label键值对用于设置标题文本内容,style参数用于自定义css样式;

labelPosition,字符型,top时标题会置于顶部,bottom时会置于底部;

size,设置部件整体的像素宽度

value,字典型,作为参数时可以用来设定色彩选择器的初始色彩,作为属性时可以获取当前色彩选择器的选定色彩,hex键值对可以直接获取十六进制色彩值,rgb键对应的值为包含r、g、b和a四个键值对的字典,即构成rgba色彩值的三通道+透明度值。

让我们通过下面这个简单的例子来认识它的工作过程:

app3.py

import dash
import dash_daq as daq
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        daq.ColorPicker(
            id='color-picker',
            label={
                'label': '色彩选择器',
                'style': {
                    'font-size': '18px',
                    'font-family': 'SimHei',
                    'font-weight': 'bold'
                }
            },
            size=400,
            value=dict(hex="#120E03")
        ),
        html.P(
            '测试'*100,
            id='demo-p',
            style={
                'margin-top': '20px'
            }
        )
    ],
    style={
        'margin-top': '30px',
        'max-width': '500px'
    }
)

app.clientside_callback(
    """
    function(color) {
        return {'color': color.hex, 'margin-top': '20px'};
    }
    """,
    Output('demo-p', 'style'),
    Input('color-picker', 'value')
)

if __name__ == '__main__':
    app.run_server(debug=True)

动图录制出来因为被压缩了所以色彩区域看起来跟打了码似得:

python开发实时可视化仪表盘的示例

实际上是这样的:

python开发实时可视化仪表盘的示例

2.4 利用DashDatetimepicker()进行时间范围选择

接下来我要给大家介绍的这个部件DashDatetimepicker()也是来自第三方库,它基于react-datetime,可以帮助我们创建进行日期选择功能的部件(其实dash-core_components中也有类似功能的DatePickerRange()部件,但是太丑了,而且对中文支持的不好)。

使用pip install dash_datetimepicker完成安装之后,默认的部件月份和星期的名称显示都是英文的,我通过对相关的js源码略加修改之后,便可以使用中文了,大家使用的时候把本期附件中的dash_datetimepicker.min.js放到assets目录下即可。

DashDatetimepicker()使用起来非常简单,除了id之外,我们只需要在回调中获取它的startDate与endDate属性即可捕获到用户设置的日期时间范围(在回调中我们接收到的开始结束时间需要加上8个小时,这是个bug):

app4.py

import dash
import pandas as pd
import dash_datetimepicker
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        dash_datetimepicker.DashDatetimepicker(id="datetime-picker"),
        html.H6(id='datetime-output', style={'margin-top': '20px'})
    ],
    style={
        'margin-top': '100px',
        'max-width': '600px'
    }
)


@app.callback(
    Output('datetime-output', 'children'),
    [Input('datetime-picker', 'startDate'),
     Input('datetime-picker', 'endDate')]
)
def datetime_range(startDate, endDate):
    # 修正8小时时间差bug并格式化为字符串
    startDate = (pd.to_datetime(startDate) + pd.Timedelta(hours=8)).strftime('%Y-%m-%d %H:%M')
    endDate = (pd.to_datetime(endDate) + pd.Timedelta(hours=8)).strftime('%Y-%m-%d %H:%M')

    return f'从 {startDate} 到 {endDate}'


if __name__ == "__main__":
    app.run_server(debug=True)

python开发实时可视化仪表盘的示例

3 动手打造一个实时可视化大屏

在学习完今天的内容之后,我们就可以做一些功能上很amazing的事情——搭建一个实时更新的可视化仪表盘。

思路其实很简单,主要用到今天学习到的Interval()与Store(),原理是先从官网静态的案例中移植js代码到Dash的浏览器端回调中,构建出输入为Store()的data的回调函数;

再利用Interval()的n_intervals触发Store()的data更新,从而实现这套从数据更新到图表更新的链式反应。效果如下:

python开发实时可视化仪表盘的示例

而代码涉及到多个文件,这里就不直接放出,你可以在文章开头的地址中找到对应本期的附件进行学习。

以上就是python开发实时可视化仪表盘的示例的详细内容,更多关于python开发实时可视化仪表盘的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现指定字符串补全空格、前面填充0的方法
Nov 16 Python
对django xadmin自定义菜单的实例详解
Jan 03 Python
Python3.5模块的定义、导入、优化操作图文详解
Apr 27 Python
python实现nao机器人身体躯干和腿部动作操作
Apr 29 Python
Python实现微信中找回好友、群聊用户撤回的消息功能示例
Aug 23 Python
解决python web项目意外关闭,但占用端口的问题
Dec 17 Python
解决Tensorboard可视化错误:不显示数据 No scalar data was found
Feb 15 Python
Python3.9又更新了:dict内置新功能
Feb 28 Python
python/golang实现循环链表的示例代码
Sep 14 Python
pytorch __init__、forward与__call__的用法小结
Feb 27 Python
自己搭建resnet18网络并加载torchvision自带权重的操作
May 13 Python
Pandas实现批量拆分与合并Excel的示例代码
May 30 Python
Python使用scapy模块发包收包
如何用 Python 子进程关闭 Excel 自动化中的弹窗
PyTorch的Debug指南
May 07 #Python
基于Python的EasyGUI学习实践
Python列表删除重复元素与图像相似度判断及删除实例代码
使用python如何删除同一文件夹下相似的图片
May 07 #Python
python学习之panda数据分析核心支持库
You might like
php set_time_limit()函数的使用详解
2013/06/05 PHP
PHP中FTP相关函数小结
2016/07/15 PHP
理解Javascript_15_作用域分配与变量访问规则,再送个闭包
2010/10/20 Javascript
jquery改变tr背景色的示例代码
2013/12/28 Javascript
Javascript基础教程之if条件语句
2015/01/18 Javascript
jQuery中大家不太了解的几个方法
2015/03/04 Javascript
JQuery点击事件回到页面顶部效果的实现代码
2016/05/24 Javascript
js与applet相互调用的方法
2016/06/22 Javascript
微信小程序  Mustache语法详细介绍
2016/10/27 Javascript
JS实现百度网盘任意文件强制下载功能
2018/08/31 Javascript
vue二级菜单导航点击选中事件的方法
2018/09/12 Javascript
微信小程序使用setData修改数组中单个对象的方法分析
2018/12/30 Javascript
js时间转换毫秒的实例代码
2019/08/21 Javascript
微信小程序实现上传图片裁剪图片过程解析
2019/08/22 Javascript
基于javascript实现日历功能原理及代码实例
2020/05/07 Javascript
javascript使用canvas实现饼状图效果
2020/09/08 Javascript
[46:20]CHAOS vs Alliacne 2019国际邀请赛小组赛 BO2 第二场 8.15
2019/08/16 DOTA
Python求两个文本文件以行为单位的交集、并集与差集的方法
2015/06/17 Python
Python中的数学运算操作符使用进阶
2016/06/20 Python
python: line=f.readlines()消除line中\n的方法
2018/03/19 Python
Python 占位符的使用方法详解
2019/07/10 Python
Jupyter notebook 启动闪退问题的解决
2020/04/13 Python
基于python实现上传文件到OSS代码实例
2020/05/09 Python
python判断all函数输出结果是否为true的方法
2020/12/03 Python
Python3+SQLAlchemy+Sqlite3实现ORM教程
2021/02/16 Python
Ariat英国官网:为世界顶级马术运动员制造最优质的鞋类和服装
2020/02/14 全球购物
社团招新策划书
2014/02/04 职场文书
入党申请自荐书范文
2014/02/11 职场文书
酒店管理专业毕业生自我鉴定
2014/09/29 职场文书
预备党员群众路线思想汇报2014
2014/10/25 职场文书
天下第一关导游词
2015/02/06 职场文书
起诉状范本
2015/05/20 职场文书
民事调解书范文
2015/05/20 职场文书
2016预备党员培训心得体会
2016/01/08 职场文书
温馨祝福晨语:美丽的一天从我的问候开始
2019/11/28 职场文书
WCG2010 星际争霸决赛 Flash vs Goojila 1 星际经典比赛回顾
2022/04/01 星际争霸