matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)


Posted in Python onJanuary 05, 2021

1、plt.rcParams

plt(matplotlib.pyplot)使用rc配置文件来自定义图形的各种默认属性,称之为“rc配置”或“rc参数”。
通过rc参数可以修改默认的属性,包括窗体大小、每英寸的点数、线条宽度、颜色、样式、坐标轴、坐标和网络属性、文本、字体等。rc参数存储在字典变量中,通过字典的方式进行访问。

matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)

代码:

import numpy as np
import matplotlib.pyplot as plt
###%matplotlib inline  #jupyter可以用,这样就不用plt.show()
 
#生成数据
x = np.linspace(0, 4*np.pi)
y = np.sin(x)
#设置rc参数显示中文标题
#设置字体为SimHei显示中文
plt.rcParams['font.sans-serif'] = 'SimHei'
#设置正常显示字符
plt.rcParams['axes.unicode_minus'] = False
plt.title('sin曲线')
#设置线条样式
plt.rcParams['lines.linestyle'] = '-.'
#设置线条宽度
plt.rcParams['lines.linewidth'] = 3
#绘制sin曲线
plt.plot(x, y, label='$sin(x)$')
 
plt.savefig('sin.png')
plt.show()

matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)

参数:

plt.rcParams['savefig.dpi'] = 300 #图片像素
plt.rcParams['figure.dpi'] = 300 #分辨率
plt.savefig(‘plot123_2.png', dpi=200)#指定分辨率
# 默认的像素:[6.0,4.0],分辨率为100,图片尺寸为 600&400
# 指定dpi=200,图片尺寸为 1200*800
# 指定dpi=300,图片尺寸为 1800*1200
 
 
plt.rcParams['figure.figsize'] = (8.0, 4.0)    # 图像显示大小
plt.rcParams['image.interpolation'] = 'nearest' # 最近邻差值: 像素为正方形
#Interpolation/resampling即插值,是一种图像处理方法,它可以为数码图像增加或减少象素的数目。
 
plt.rcParams['image.cmap'] = 'gray' # 使用灰度输出而不是彩色输出
 
plt.axis('off')  #打印图片的时候不显示坐标轴

from:https://3water.com/article/203481.htm

更详细的配置参见:https://my.oschina.net/swuly302/blog/94805

2、matshow函数

这是一个绘制矩阵的函数:matplotlib.pyplot.matshow(Afignum=None**kwargs)

A是绘制的矩阵,一个矩阵元素对应一个图像像素。

例如:plt.matshow(Mat,  cmap=plt.cm.gray),cmap代表一种颜色映射方式。

 matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)

实例:

plt.plot(A, "r-+", linewidth=2, label="train")
  plt.plot(B, "b-", linewidth=3, label="val")
  plt.legend(loc="upper right", fontsize=14)  # 设置位置
  plt.xlabel("Training set size", fontsize=14) # 标签
  plt.ylabel("RMSE", fontsize=14) 
plt.axis([0, 80, 0, 3])#表示要显示图形的范围
plt.xticks(np.arange(0, 81, step=20))#设置刻度
plt.yticks(np.arange(0, 4, step=1))

matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)

Axes - Subplot - Axis 之间到底是个什么关系

用matplotlib.pyplot绘图需要知道以下几个概念:

  • 画图板/画布:这是一个基础载体,类似实际的画图板,用pyplot.figure()函数创建,程序中允许创建多个画图板,具体操作的画板遵循就近原则(操作是在最近一次调用的画图板上实现),缺省条件下内部默认调用pyplot.figure(1)。
  • 图形区/绘图区:用来绘图的实际区域,一般不直接获取,直接设定方式为pyplot.axes([x, y, w, h]),即axes函数直接确定了该区域在画图板/画布中的位置为x,y 尺寸为w,h
  • 标签区:用来展示图形相关标签的地方,一般不直接设定(未仔细研究过),该区域根据图形区进行扩展,与该区域有关联的函数是pyplot.xlabel()、pyplot.ylabel()、pyplot.title()等
fig = plt.figure() 
plt.show()
 
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)

用画板和画纸来做比喻的话,figure就好像是画板,是画纸的载体, 但是具体画画等操作是在画纸上完成的。 在pyplot中,画纸的概念对应的就是Axes/Subplot。

matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)

对比:

figure (1) VS figure()
      figure()操作就是创建或者调用画图板,缺省情况下系统会创建figure(1)作为画图板。使用时遵循就近原则,所有画图操作是在最近一次调用的画图板上实现。

axes() VS subplot()
      pyplot.axes([x, y, w, h])是用来在画图板上确认图形区的位置和大小的函数,x,y表示图形区左下角相对于画图板的坐标,w,h表示图形区的宽高。(缺省时该操作在figure(1)上操作)

      pyplot.subplot(abc)本质也是用来确认图形区在画图板上位置大小的函数,区别是该函数将画图板按a行b列等分,然后逐行编号,并选择编号为c的区域作为图形区用来绘图。这是一个axes()操作的高级封装,方便用户使用。subplot(233)表示2行3列的第3个位置(即,第1行第三个区域)

同时,pyplot.show()实际展示的区域是画图板上所有图形区的最小包围区,不是整个画图板,即如果仅仅调用了subplot(224)结果只展示右下角的4号区域,而不是1、2、3、4都展示,因此会存在一定的错觉。

axes() VS axis()
       axes([x, y, w, h])用来设定图形区;

       axis([x_left, x_right, y_bottom, y_top])是用来设置所绘制图形的视窗大小的,表示直接展示的图形是需要满足参数中范围的值,直观表现是绘图区实际展示的坐标范围。

注:axis作用的图形区依旧遵守就近原则。

subplot() VS plot()
       subplot用来生成图形区;

       plot是实际使用的绘图函数,类似的函数还有hist等,plot操作遵守就近原则,即作用在最近一次使用的图形区上。

官网:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html

到此这篇关于matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)的文章就介绍到这了,更多相关matplotlib plt.rcParams、matshow内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python比较两个列表大小的方法
Jul 11 Python
python django使用haystack:全文检索的框架(实例讲解)
Sep 27 Python
浅谈Python中的全局锁(GIL)问题
Jan 11 Python
解决pycharm回车之后不能换行或不能缩进的问题
Jan 16 Python
pytorch 加载(.pth)格式的模型实例
Aug 20 Python
对Python 中矩阵或者数组相减的法则详解
Aug 26 Python
Python实现RGB与HSI颜色空间的互换方式
Nov 27 Python
Python制作简易版小工具之计算天数的实现思路
Feb 13 Python
Python脚本实现监听服务器的思路代码详解
May 28 Python
Python爬取YY评级分数并保存数据实现过程解析
Jun 01 Python
python数据类型强制转换实例详解
Jun 22 Python
Linux系统下升级pip的完整步骤
Jan 31 Python
matplotlib运行时配置(Runtime Configuration,rc)参数rcParams解析
Jan 05 #Python
matplotlib制作雷达图报错ValueError的实现
Jan 05 #Python
python实现三种随机请求头方式
Jan 05 #Python
scrapy实践之翻页爬取的实现
Jan 05 #Python
python里glob模块知识点总结
Jan 05 #Python
python用opencv 图像傅里叶变换
Jan 04 #Python
python基于opencv 实现图像时钟
Jan 04 #Python
You might like
PHP的FTP学习(二)[转自奥索]
2006/10/09 PHP
php-cli简介(不会Shell语言一样用Shell)
2013/06/03 PHP
ThinkPHP实现非标准名称数据表快速创建模型的方法
2014/11/29 PHP
PHP使用内置函数file_put_contents写入文件及追加内容的方法
2015/12/07 PHP
PHP基于方差和标准差计算学生成绩的稳定性示例
2017/07/04 PHP
javascript Xml增删改查(IE下)操作实现代码
2009/01/30 Javascript
JavaScript中去掉数组中的重复值的实现方法
2011/08/03 Javascript
js动态往表格的td中添加图片并注册事件
2014/06/12 Javascript
jQuery实现时尚漂亮的弹出式对话框实例
2015/08/07 Javascript
Perl Substr()函数及函数的应用
2015/12/16 Javascript
微信小程序 选择器(时间,日期,地区)实例详解
2016/11/16 Javascript
JS中如何实现复选框全选功能
2016/12/19 Javascript
详谈js中window.location.search的用法和作用
2017/02/13 Javascript
JavaScript中object和Object的区别(详解)
2017/02/27 Javascript
JavaScript数据结构之二叉树的计数算法示例
2017/04/13 Javascript
JavaScript实现反转字符串的方法详解
2017/04/27 Javascript
Vue v2.4中新增的$attrs及$listeners属性使用教程
2018/01/08 Javascript
JavaScript中作用域链的概念及用途讲解
2020/08/06 Javascript
在Python的web框架中中编写日志列表的教程
2015/04/30 Python
python Django批量导入数据
2016/03/25 Python
Python实现感知机(PLA)算法
2017/12/20 Python
python绘制地震散点图
2019/06/18 Python
Python图像处理库PIL的ImageDraw模块介绍详解
2020/02/26 Python
PyCharm 无法 import pandas 程序卡住的解决方式
2020/03/09 Python
python基本算法之实现归并排序(Merge sort)
2020/09/01 Python
纯CSS3实现手风琴风格菜单具体步骤
2013/05/06 HTML / CSS
美国求婚钻戒网站:Super Jeweler
2016/08/27 全球购物
英国足球店:UK Soccer Shop
2017/11/19 全球购物
加拿大领先的牛仔零售商:Bluenotes
2018/01/22 全球购物
80年代复古T恤:TruffleShuffle
2018/07/02 全球购物
农村婚礼证婚词
2014/01/10 职场文书
技能竞赛活动方案
2014/02/21 职场文书
商场主管竞聘书
2014/03/31 职场文书
字典算法实现及操作 --python(实用)
2021/03/31 Python
在CSS中使用when/else的方法
2022/01/18 HTML / CSS
使用Mysql计算地址的经纬度距离和实时位置信息
2022/04/29 MySQL