keras实现基于孪生网络的图片相似度计算方式


Posted in Python onJune 11, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Convolution2D
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from scipy import misc
root_path = os.getcwd()
train_names = ['bear','blackswan','bus','camel','car','cows','dance','dog','hike','hoc','kite','lucia','mallerd','pigs','soapbox','stro','surf','swing','train','walking']
test_names = ['boat','dance-jump','drift-turn','elephant','libby']
 
def load_data(seq_names,data_number,seq_len): 
#生成图片对
  print('loading data.....')
  frame_num = 51
  train_data1 = []
  train_data2 = []
  train_lab = []
  count = 0
  while count < data_number:
    count = count + 1
    pos_neg = np.random.randint(0,2)
    if pos_neg==0:
      seed1 = np.random.randint(0,seq_len)
      seed2 = np.random.randint(0,seq_len)
      while seed1 == seed2:
       seed1 = np.random.randint(0,seq_len)
       seed2 = np.random.randint(0,seq_len)
      frame1 = np.random.randint(1,frame_num)
      frame2 = np.random.randint(1,frame_num)
      path1 = os.path.join(root_path,'data','simility_data',seq_names[seed1],str(frame1)+'.jpg')
      path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed2], str(frame2) + '.jpg')
      image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
      image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
      train_data1.append(image1)
      train_data2.append(image2)
      train_lab.append(np.array(0))
    else:
     seed = np.random.randint(0,seq_len)
     frame1 = np.random.randint(1, frame_num)
     frame2 = np.random.randint(1, frame_num)
     path1 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame1) + '.jpg')
     path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame2) + '.jpg')
     image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
     image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
     train_data1.append(image1)
     train_data2.append(image2)
     train_lab.append(np.array(1))
  return np.array(train_data1),np.array(train_data2),np.array(train_lab)
 
def vgg_16_base(input_tensor):
  net = Conv2D(64(3,3),activation='relu',padding='same',input_shape=(224,224,3))(input_tensor)
  net = Convolution2D(64,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net= MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
  net = Flatten()(net)
  return net
 
def siamese(vgg_path=None,siamese_path=None):
  input_tensor = Input(shape=(224,224,3))
  vgg_model = Model(input_tensor,vgg_16_base(input_tensor))
  if vgg_path:
    vgg_model.load_weights(vgg_path)
  input_im1 = Input(shape=(224,224,3))
  input_im2 = Input(shape=(224,224,3))
  out_im1 = vgg_model(input_im1)
  out_im2 = vgg_model(input_im2)
  diff = keras.layers.substract([out_im1,out_im2])
  out = Dense(500,activation='relu')(diff)
  out = Dense(1,activation='sigmoid')(out)
  model = Model([input_im1,input_im2],out)
  if siamese_path:
    model.load_weights(siamese_path)
  return model
 
train = True
if train:
  model = siamese(siamese_path='model/simility/vgg.h5')
  sgd = SGD(lr=1e-6,momentum=0.9,decay=1e-6,nesterov=True)
  model.compile(optimizer=sgd,loss='mse',metrics=['accuracy'])
  tensorboard = keras.callbacks.TensorBoard(histogram_freq=5,log_dir='log/simility',write_grads=True,write_images=True)
  ckpt = keras.callbacks.ModelCheckpoint(os.path.join(root_path,'model','simility','vgg.h5'),
                    verbose=1,period=5)
  train_data1,train_data2,train_lab = load_data(train_names,4000,20)
  model.fit([train_data1,train_data2],train_lab,callbacks=[tensorboard,ckpt],batch_size=64,epochs=50)
else:
  model = siamese(siamese_path='model/simility/vgg.h5')
  test_im1,test_im2,test_labe = load_data(test_names,1000,5)
  TP = 0
  for i in range(1000):
   im1 = np.expand_dims(test_im1[i],axis=0)
   im2 = np.expand_dims(test_im2[i],axis=0)
   lab = test_labe[i]
   pre = model.predict([im1,im2])
   if pre>0.9 and lab==1:
    TP = TP + 1
   if pre<0.9 and lab==0:
    TP = TP + 1
  print(float(TP)/1000)

输入两张图片,标记1为相似,0为不相似。

损失函数用的是简单的均方误差,有待改成Siamese的对比损失。

总结:

1.随机生成了几组1000对的图片,测试精度0.7左右,效果一般。

2.问题 1)数据加载没有用生成器,还得继续认真看看文档 2)训练时划分验证集的时候,训练就会报错,什么输入维度的问题,暂时没找到原因 3)输入的shape好像必须给出数字,本想用shape= input_tensor.get_shape(),能训练,不能保存模型,会报(NOT JSON Serializable,Dimension(None))类型错误

补充知识: keras 问答匹配孪生网络文本匹配 RNN 带有数据

用途:

这篇博客解释了如何搭建一个简单的匹配网络。并且使用了keras的lambda层。在建立网络之前需要对数据进行预处理。处理过后,文本转变为id字符序列。将一对question,answer分别编码可以得到两个向量,在匹配层中比较两个向量,计算相似度。

网络图示:

keras实现基于孪生网络的图片相似度计算方式

数据准备:

数据基于网上的淘宝客服对话数据,我也会放在我的下载页面中。原数据是对话,我筛选了其中label为1的对话。然后将对话拆解成QA对,q是用户,a是客服。然后对于每个q,有一个a是匹配的,label为1.再选择一个a,构成新的样本,label为0.

超参数:

比较简单,具体看代码就可以了。

# dialogue max pair q,a
max_pair = 30000
# top k frequent word ,k
MAX_FEATURES = 450
# fixed q,a length
MAX_SENTENCE_LENGTH = 30
embedding_size = 100
batch_size = 600
# learning rate
lr = 0.01
HIDDEN_LAYER_SIZE = n_hidden_units = 256 # neurons in hidden layer

细节:

导入一些库

# -*- coding: utf-8 -*-
from keras.layers.core import Activation, Dense, Dropout, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np
import os
import pandas as pd
from alime_data import convert_dialogue_to_pair
from parameter import MAX_SENTENCE_LENGTH,MAX_FEATURES,embedding_size,max_pair,batch_size,HIDDEN_LAYER_SIZE
DATA_DIR = "../data"
NUM_EPOCHS = 2
# Read training data and generate vocabulary
maxlen = 0
num_recs = 0

数据准备,先统计词频,然后取出top N个常用词,然后将句子转换成 单词id的序列。把句子中的有效id靠右边放,将句子左边补齐padding。然后分成训练集和测试集

word_freqs = collections.Counter()
training_data = convert_dialogue_to_pair(max_pair)
num_recs = len([1 for r in training_data.iterrows()])
 
#for line in ftrain:
for line in training_data.iterrows():
  label ,sentence_q = line[1]['label'],line[1]['sentence_q']
  label ,sentence_a = line[1]['label'],line[1]['sentence_a']
  words = nltk.word_tokenize(sentence_q.lower())#.decode("ascii", "ignore")
  if len(words) > maxlen:
    maxlen = len(words)
  for word in words:
    word_freqs[word] += 1
  words = nltk.word_tokenize(sentence_a.lower())#.decode("ascii", "ignore")
  if len(words) > maxlen:
    maxlen = len(words)
  for word in words:
    word_freqs[word] += 1
  #num_recs += 1
## Get some information about our corpus
 
# 1 is UNK, 0 is PAD
# We take MAX_FEATURES-1 featurs to accound for PAD
vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
word2index["PAD"] = 0
word2index["UNK"] = 1
index2word = {v:k for k, v in word2index.items()}
# convert sentences to sequences
X_q = np.empty((num_recs, ), dtype=list)
X_a = np.empty((num_recs, ), dtype=list)
y = np.zeros((num_recs, ))
i = 0
def chinese_split(x):
  return x.split(' ')
 
for line in training_data.iterrows():
  label ,sentence_q,sentence_a = line[1]['label'],line[1]['sentence_q'],line[1]['sentence_a']
  #label, sentence = line.strip().split("\t")
  #print(label,sentence)
  #words = nltk.word_tokenize(sentence_q.lower())
  words = chinese_split(sentence_q)
  seqs = []
  for word in words:
    if word in word2index.keys():
      seqs.append(word2index[word])
    else:
      seqs.append(word2index["UNK"])
  X_q[i] = seqs
  #print('add_q')
  #words = nltk.word_tokenize(sentence_a.lower())
  words = chinese_split(sentence_a)
  seqs = []
  for word in words:
    if word in word2index.keys():
      seqs.append(word2index[word])
    else:
      seqs.append(word2index["UNK"])
  X_a[i] = seqs
  y[i] = int(label)
  i += 1
# Pad the sequences (left padded with zeros)
X_a = sequence.pad_sequences(X_a, maxlen=MAX_SENTENCE_LENGTH)
X_q = sequence.pad_sequences(X_q, maxlen=MAX_SENTENCE_LENGTH)
X = []
for i in range(len(X_a)):
  concat = [X_q[i],X_a[i]]
  X.append(concat)
 
# Split input into training and test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2,
                        random_state=42)
#print(Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape)
Xtrain_Q = [e[0] for e in Xtrain]
Xtrain_A = [e[1] for e in Xtrain]
Xtest_Q = [e[0] for e in Xtest]
Xtest_A = [e[1] for e in Xtest]

最后建立网络。先定义两个函数,一个是句子编码器,另一个是lambda层,计算两个向量的绝对差。将QA分别用encoder处理得到两个向量,把两个向量放入lambda层。最后有了2*hidden size的一层,将这一层接一个dense层,接activation,得到分类概率。

from keras.layers.wrappers import Bidirectional
from keras.layers import Input,Lambda
from keras.models import Model
 
def encoder(inputs_seqs,rnn_hidden_size,dropout_rate):
  x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_seqs)
  inputs_drop = SpatialDropout1D(0.2)(x_embed)
  encoded_Q = Bidirectional(
    LSTM(rnn_hidden_size, dropout=dropout_rate, recurrent_dropout=dropout_rate, name='RNN'))(inputs_drop)
  return encoded_Q
 
def absolute_difference(vecs):
  a,b =vecs
  #d = a-b
  return abs(a - b)
 
inputs_Q = Input(shape=(MAX_SENTENCE_LENGTH,), name="input")
# x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_Q)
# inputs_drop = SpatialDropout1D(0.2)(x_embed)
# encoded_Q = Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2,name= 'RNN'))(inputs_drop)
inputs_A = Input(shape=(MAX_SENTENCE_LENGTH,), name="input_a")
# x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_A)
# inputs_drop = SpatialDropout1D(0.2)(x_embed)
# encoded_A = Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2,name= 'RNN'))(inputs_drop)
encoded_Q = encoder(inputs_Q,HIDDEN_LAYER_SIZE,0.1)
encoded_A = encoder(inputs_A,HIDDEN_LAYER_SIZE,0.1)
 
# import tensorflow as tf
# difference = tf.subtract(encoded_Q, encoded_A)
# difference = tf.abs(difference)
similarity = Lambda(absolute_difference)([encoded_Q, encoded_A])
# x = concatenate([encoded_Q, encoded_A])
#
# matching_x = Dense(128)(x)
# matching_x = Activation("sigmoid")(matching_x)
polar = Dense(1)(similarity)
prop = Activation("sigmoid")(polar)
model = Model(inputs=[inputs_Q,inputs_A], outputs=prop)
model.compile(loss="binary_crossentropy", optimizer="adam",
       metrics=["accuracy"])
training_history = model.fit([Xtrain_Q, Xtrain_A], ytrain, batch_size=batch_size,
               epochs=NUM_EPOCHS,
               validation_data=([Xtest_Q,Xtest_A], ytest))
# plot loss and accuracy
def plot(training_history):
  plt.subplot(211)
  plt.title("Accuracy")
  plt.plot(training_history.history["acc"], color="g", label="Train")
  plt.plot(training_history.history["val_acc"], color="b", label="Validation")
  plt.legend(loc="best")
 
  plt.subplot(212)
  plt.title("Loss")
  plt.plot(training_history.history["loss"], color="g", label="Train")
  plt.plot(training_history.history["val_loss"], color="b", label="Validation")
  plt.legend(loc="best")
  plt.tight_layout()
  plt.show()
 
# evaluate
score, acc = model.evaluate([Xtest_Q,Xtest_A], ytest, batch_size = batch_size)
print("Test score: %.3f, accuracy: %.3f" % (score, acc))
 
for i in range(25):
  idx = np.random.randint(len(Xtest_Q))
  #idx2 = np.random.randint(len(Xtest_A))
  xtest_Q = Xtest_Q[idx].reshape(1,MAX_SENTENCE_LENGTH)
  xtest_A = Xtest_A[idx].reshape(1,MAX_SENTENCE_LENGTH)
  ylabel = ytest[idx]
  ypred = model.predict([xtest_Q,xtest_A])[0][0]
  sent_Q = " ".join([index2word[x] for x in xtest_Q[0].tolist() if x != 0])
  sent_A = " ".join([index2word[x] for x in xtest_A[0].tolist() if x != 0])
  print("%.0f\t%d\t%s\t%s" % (ypred, ylabel, sent_Q,sent_A))

最后是处理数据的函数,写在另一个文件里。

import nltk
from parameter import MAX_FEATURES,MAX_SENTENCE_LENGTH
import pandas as pd
from collections import Counter
def get_pair(number, dialogue):
  pairs = []
  for conversation in dialogue:
    utterances = conversation[2:].strip('\n').split('\t')
    # print(utterances)
    # break
 
    for i, utterance in enumerate(utterances):
      if i % 2 != 0: continue
      pairs.append([utterances[i], utterances[i + 1]])
      if len(pairs) >= number:
        return pairs
  return pairs
 
 
def convert_dialogue_to_pair(k):
  dialogue = open('dialogue_alibaba2.txt', encoding='utf-8', mode='r')
  dialogue = dialogue.readlines()
  dialogue = [p for p in dialogue if p.startswith('1')]
  print(len(dialogue))
  pairs = get_pair(k, dialogue)
  # break
  # print(pairs)
  data = []
  for p in pairs:
    data.append([p[0], p[1], 1])
  for i, p in enumerate(pairs):
    data.append([p[0], pairs[(i + 8) % len(pairs)][1], 0])
  df = pd.DataFrame(data, columns=['sentence_q', 'sentence_a', 'label'])
 
  print(len(data))
  return df

以上这篇keras实现基于孪生网络的图片相似度计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 字典(Dictionary)操作详解
Mar 11 Python
Python写的贪吃蛇游戏例子
Jun 16 Python
在Python的Django框架中更新数据库数据的方法
Jul 17 Python
django_orm查询性能优化方法
Aug 20 Python
python matplotlib饼状图参数及用法解析
Nov 04 Python
python支持多线程的爬虫实例
Dec 21 Python
使用Python操作ArangoDB的方法步骤
Feb 02 Python
python绘制动态曲线教程
Feb 24 Python
浅析python标准库中的glob
Mar 13 Python
Python使用monkey.patch_all()解决协程阻塞问题
Apr 15 Python
基于selenium及python实现下拉选项定位select
Jul 22 Python
Python基础之函数嵌套知识总结
May 23 Python
为什么说python适合写爬虫
Jun 11 #Python
python新手学习使用库
Jun 11 #Python
keras实现多种分类网络的方式
Jun 11 #Python
python的help函数如何使用
Jun 11 #Python
新手学python应该下哪个版本
Jun 11 #Python
python开发前景如何
Jun 11 #Python
python编写softmax函数、交叉熵函数实例
Jun 11 #Python
You might like
PHP 导出数据到淘宝助手CSV的方法分享
2010/02/27 PHP
php中禁止单个IP与ip段访问的代码小结
2012/07/04 PHP
使用php发送有附件的电子邮件-(PHPMailer使用的实例分析)
2013/04/26 PHP
PHP图片等比缩放类SimpleImage使用方法和使用实例分享
2014/04/10 PHP
PHP MPDF中文乱码的解决方式
2015/12/08 PHP
3种方法轻松处理php开发中emoji表情的问题
2016/07/18 PHP
详解new function(){}和function(){}() 区别分析
2008/03/22 Javascript
js性能优化 如何更快速加载你的JavaScript页面
2012/03/17 Javascript
简单的Jquery遮罩层代码实例
2013/11/14 Javascript
jQuery网页选项卡插件rTabs用法实例分析
2015/08/26 Javascript
原生javascript实现匀速运动动画效果
2016/02/26 Javascript
Sortable.js拖拽排序使用方法解析
2016/11/04 Javascript
BootStrap 模态框实现刷新网页并关闭功能
2017/01/04 Javascript
jquery鼠标悬停导航下划线滑出效果
2017/09/29 jQuery
使用sessionStorage解决vuex在页面刷新后数据被清除的问题
2018/04/13 Javascript
详解vue-cli 3.0 build包太大导致首屏过长的解决方案
2018/11/10 Javascript
jQuery实现带3D切割效果的轮播图功能示例【附源码下载】
2019/04/04 jQuery
Node.js爬虫如何获取天气和每日问候详解
2019/08/26 Javascript
在layui中select更改后生效的方法
2019/09/05 Javascript
学习Python3 Dlib19.7进行人脸面部识别
2018/01/24 Python
python爬虫实例详解
2018/06/19 Python
python绘制圆柱体的方法
2018/07/02 Python
python字典值排序并取出前n个key值的方法
2018/10/17 Python
python用opencv批量截取图像指定区域的方法
2019/01/24 Python
Python实现二叉树的常见遍历操作总结【7种方法】
2019/03/06 Python
Python 3.8 新功能来一波(大部分人都不知道)
2020/03/11 Python
从0到1使用python开发一个半自动答题小程序的实现
2020/05/12 Python
python中get和post有什么区别
2020/06/19 Python
如何用Matlab和Python读取Netcdf文件
2021/02/19 Python
用canvas做一个DVD待机动画的实现代码
2019/04/12 HTML / CSS
使用html5实现表格实现标题合并的实例代码
2019/05/13 HTML / CSS
经济系大学生求职信
2013/10/01 职场文书
教育学习自我评价
2014/02/03 职场文书
带香烟到学校抽的检讨书
2014/09/25 职场文书
公司员工手册范本
2015/05/14 职场文书
前端传参数进行Mybatis调用mysql存储过程执行返回值详解
2022/08/14 MySQL