浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点


Posted in Python onJune 08, 2020

batch很好理解,就是batch size。注意在一个epoch中最后一个batch大小可能小于等于batch size

dataset.repeat就是俗称epoch,但在tf中与dataset.shuffle的使用顺序可能会导致个epoch的混合

dataset.shuffle就是说维持一个buffer size 大小的 shuffle buffer,图中所需的每个样本从shuffle buffer中获取,取得一个样本后,就从源数据集中加入一个样本到shuffle buffer中。

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(3)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
#源数据集
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

# 通过shuffle batch后取得的样本
[[ 0.4236548  0.64589411]
 [ 0.60276338 0.54488318]
 [ 0.43758721 0.891773 ]
 [ 0.5488135  0.71518937]]
[[ 0.96366276 0.38344152]
 [ 0.56804456 0.92559664]
 [ 0.0202184  0.83261985]
 [ 0.79172504 0.52889492]]
[[ 0.07103606 0.0871293 ]
 [ 0.97861834 0.79915856]
 [ 0.77815675 0.87001215]] #最后一个batch样本个数为3
[[ 0.60276338 0.54488318]
 [ 0.5488135  0.71518937]
 [ 0.43758721 0.891773 ]
 [ 0.79172504 0.52889492]]
[[ 0.4236548  0.64589411]
 [ 0.56804456 0.92559664]
 [ 0.0202184  0.83261985]
 [ 0.07103606 0.0871293 ]]
[[ 0.77815675 0.87001215]
 [ 0.96366276 0.38344152]
 [ 0.97861834 0.79915856]] #最后一个batch样本个数为3

1、按照shuffle中设置的buffer size,首先从源数据集取得三个样本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.4236548 0.64589411]
2、从buffer中取一个样本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
batch:
[ 0.4236548 0.64589411]
3、shuffle buffer不足三个样本,从源数据集提取一个样本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.43758721 0.891773 ]
4、从buffer中取一个样本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.43758721 0.891773 ]
batch:
[ 0.4236548 0.64589411]
[ 0.60276338 0.54488318]
5、如此反复。这就意味中如果shuffle 的buffer size=1,数据集不打乱。如果shuffle 的buffer size=数据集样本数量,随机打乱整个数据集

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(1)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))

[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]]
[[ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]]
[[ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]]
[[ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]]
[[ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

注意如果repeat在shuffle之前使用:

官方说repeat在shuffle之前使用能提高性能,但模糊了数据样本的epoch关系

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.repeat(2)
dataset = dataset.shuffle(11)
dataset = dataset.batch(4)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))

[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

[[ 0.56804456 0.92559664]
 [ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.07103606 0.0871293 ]]
[[ 0.96366276 0.38344152]
 [ 0.43758721 0.891773 ]
 [ 0.43758721 0.891773 ]
 [ 0.77815675 0.87001215]]
[[ 0.79172504 0.52889492]  #出现相同样本出现在同一个batch中
 [ 0.79172504 0.52889492]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]]
[[ 0.07103606 0.0871293 ]
 [ 0.4236548  0.64589411]
 [ 0.96366276 0.38344152]
 [ 0.5488135  0.71518937]]
[[ 0.97861834 0.79915856]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.56804456 0.92559664]]
[[ 0.0202184  0.83261985]
 [ 0.97861834 0.79915856]]     #可以看到最后个batch为2,而前面都是4

使用案例:

def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
  print('Parsing', filenames)
  def decode_libsvm(line):
    #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
    #features = dict(zip(CSV_COLUMNS, columns))
    #labels = features.pop(LABEL_COLUMN)
    columns = tf.string_split([line], ' ')
    labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
    splits = tf.string_split(columns.values[1:], ':')
    id_vals = tf.reshape(splits.values,splits.dense_shape)
    feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
    feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
    feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
    #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size])
    #for i in range(splits.dense_shape.eval()[0]):
    #  feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32))
    #  feat_vals.append(tf.string_to_number(splits.values[2*i+1]))
    #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels
    return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

  # Extract lines from input files using the Dataset API, can pass one filename or filename list
  dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000)  # multi-thread pre-process then prefetch

  # Randomizes input using a window of 256 elements (read into memory)
  if perform_shuffle:
    dataset = dataset.shuffle(buffer_size=256)

  # epochs from blending together.
  dataset = dataset.repeat(num_epochs)
  dataset = dataset.batch(batch_size) # Batch size to use

  #return dataset.make_one_shot_iterator()
  iterator = dataset.make_one_shot_iterator()
  batch_features, batch_labels = iterator.get_next()
  #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
  return batch_features, batch_labels

到此这篇关于浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点的文章就介绍到这了,更多相关tensorflow中dataset.shuffle和dataset.batch dataset.repeat内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木! 

Python 相关文章推荐
Python GAE、Django导出Excel的方法
Nov 24 Python
Python实现队列的方法
May 26 Python
Python发送form-data请求及拼接form-data内容的方法
Mar 05 Python
树莓派采用socket方式文件传输(python)
Jun 22 Python
Python学习笔记之文件的读写操作实例分析
Aug 07 Python
numpy创建单位矩阵和对角矩阵的实例
Nov 29 Python
pytorch之inception_v3的实现案例
Jan 06 Python
python连接打印机实现打印文档、图片、pdf文件等功能
Feb 07 Python
4行Python代码生成图像验证码(2种)
Apr 07 Python
python读取hdfs上的parquet文件方式
Jun 06 Python
浅谈pytorch中的BN层的注意事项
Jun 23 Python
使用tkinter实现三子棋游戏
Feb 25 Python
Python3通过chmod修改目录或文件权限的方法示例
Jun 08 #Python
win10下python3.8的PIL库安装过程
Jun 08 #Python
python rolling regression. 使用 Python 实现滚动回归操作
Jun 08 #Python
Python selenium爬虫实现定时任务过程解析
Jun 08 #Python
python:HDF和CSV存储优劣对比分析
Jun 08 #Python
Python实现一个简单的毕业生信息管理系统的示例代码
Jun 08 #Python
Python while true实现爬虫定时任务
Jun 08 #Python
You might like
The specified CGI application misbehaved by not returning a complete set of HTTP headers
2011/03/31 PHP
php中将数组存到文件里的实现代码
2012/01/19 PHP
php打开文件fopen函数的使用说明
2013/07/05 PHP
使用Discuz关键词服务器实现PHP中文分词
2014/03/11 PHP
PHP数组游标实现对数组的各种操作详解
2016/01/26 PHP
PHP常见的6个错误提示及解决方法
2016/07/07 PHP
PHP数组式访问接口ArrayAccess用法分析
2017/12/28 PHP
PHP多个图片压缩成ZIP的方法
2020/08/18 PHP
淘宝搜索框效果实现分析
2011/03/05 Javascript
TreeView 用法(有代码)(asp.net)
2011/07/15 Javascript
js中使用DOM复制(克隆)指定节点名数据到新的XML文件中的代码
2011/07/27 Javascript
js相册效果代码(点击创建即可)
2013/04/16 Javascript
js中复制行和删除行的操作实例
2013/06/25 Javascript
javascript实现回车键提交表单方法总结
2015/01/10 Javascript
jQuery判断多个input file 都不能为空的例子
2015/06/23 Javascript
使用BootStrap建立响应式网页——通栏轮播图(carousel)
2016/12/21 Javascript
jQuery居中元素scrollleft计算方法示例
2017/01/16 Javascript
Angular4实现动态添加删除表单输入框功能
2017/08/11 Javascript
vue router嵌套路由在history模式下刷新无法渲染页面问题的解决方法
2018/01/25 Javascript
vue中使用heatmapjs的示例代码(结合百度地图)
2018/09/05 Javascript
vue项目前端错误收集之sentry教程详解
2019/05/27 Javascript
mui js控制开关状态、修改switch开关的值方法
2019/09/03 Javascript
html-webpack-plugin修改页面的title的方法
2020/06/18 Javascript
VUE使用 wx-open-launch-app 组件开发微信打开APP功能
2020/08/11 Javascript
[01:29]2017 DOTA2国际邀请赛官方英雄手办展示
2017/03/18 DOTA
PyCharm在win10的64位系统安装实例
2017/11/26 Python
Python人工智能之路 jieba gensim 最好别分家之最简单的相似度实现
2019/08/13 Python
预订从美国飞往印度的机票:MyTicketsToIndia
2017/05/19 全球购物
First Aid Beauty官网:FAB急救面霜
2018/05/24 全球购物
求职信怎么写范文
2014/05/26 职场文书
党的群众路线教育实践活动领导班子对照检查材料
2014/09/25 职场文书
2015年小学开学寄语
2015/02/27 职场文书
学校教学工作总结2015
2015/05/19 职场文书
python opencv人脸识别考勤系统的完整源码
2021/04/26 Python
Go中的条件语句Switch示例详解
2021/08/23 Golang
Python作用域和名称空间的详细介绍
2022/04/13 Python