pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]


Posted in Python onApril 24, 2020

1 引言

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。

Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍。

在Dataframe中选取数据大抵包括3中情况:

1)行(列)选取(单维度选取):df[]。这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件)。

2)区域选取(多维选取):df.loc[],df.iloc[],df.ix[]。这种方式可以同时为多个维度设置筛选条件。

3)单元格选取(点选取):df.at[],df.iat[]。准确定位一个单元格。

接下来,我们以下面的数据为例,分别通过实例介绍这三种情况。

>>> import pandas as pd
>>> import numpy as np
>>> data = {'name': ['Joe', 'Mike', 'Jack', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jason', 'Even'],

    'age': [25, 32, 18, np.nan, 15, 20, 41, np.nan, 37, 32],

    'gender': [1, 0, 1, 1, 0, 1, 0, 0, 1, 0],

    'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}

>>> labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> df = pd.DataFrame(data, index=labels)

>>> df

  name  age gender isMarried

a  Joe 25.0    1    yes

b  Mike 32.0    0    yes

c  Jack 18.0    1    no

d  Rose  NaN    1    yes

e David 15.0    0    no

f Marry 20.0    1    no

g Wansi 41.0    0    no

h  Sidy  NaN    0    yes

i Jason 37.0    1    no

j  Even 32.0    0    no

2 行(列)选取:df[]

行(列)选取是在单一维度上进行数据的选取,即以行为单位进行选取或者以列为单位进行选取。Dataframe对象的行有索引(index),默认情况下是[0,1,2,……]的整数序列,也可以自定义添加另外的索引,例如上面的labels,(为区分默认索引和自定义的索引,在本文中将默认索引称为整数索引,自定义索引称为标签索引)。Dataframe对象的每一列都有列名,可以通过列名实现对列的选取。

1)选取行

选取行的方式包括三种:整数索引切片、标签索引切片和布尔数组。

a)整数索引切片:前闭后开

选取第一行:

>>> df[0:1]

 name  age gender isMarried

a Joe 25.0    1    yes

选取前两行:

>>> df[0:2]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

b)标签索引切片:前闭后闭

选取第一行:

>>> df[:'a']

 name  age gender isMarried

a Joe 25.0    1    yes

选取前两行:

>>> df['a':'b']

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

注意:整数索引切片是前闭后开,标签索引切片是前闭后闭,这点尤其要注意。

c)布尔数组

选取前三行

>>> df[[True,True,True,False,False,False,False,False,False,False]]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

c Jack 18.0    1    no

选取所有age大于30的行

>>> df[[each>30 for each in df['age']]]

  name  age gender isMarried

b  Mike 32.0    0    yes

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

通过布尔数组的方式,又可以衍生出下面的选取方式:

选取所有age大于30的行

>>> df[df['age']>30]

  name  age gender isMarried

b  Mike 32.0    0    yes

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

选取出所有age大于30,且isMarried为no的行

>>> df[(df['age']>30) & (df['isMarried']=='no')]

  name  age gender isMarried

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

选取出所有age为20或32的行

>>> df[(df['age']==20) | (df['age']==32)]

  name  age gender isMarried

b  Mike 32.0    0    yes

f Marry 20.0    1    no

j  Even 32.0    0    no

注意:像上面这种通过多个布尔条件判断的情况,多个条件最好(一定)用括号括起来,否则非常容易出错。

2)列选取

列选取方式也有三种:标签索引、标签列表、Callable对象

a)标签索引:选取单个列

选取name列所有数据

>>> df['name']

a   Joe

b   Mike

c   Jack

d   Rose

e  David

f  Marry

g  Wansi

h   Sidy

i  Jason

j   Even

Name: name, dtype: object

b)标签列表:选取多个列

选取name和age两列数据

>>> df[['name','age']]

  name  age

a  Joe 25.0

b  Mike 32.0

c  Jack 18.0

d  Rose  NaN

e David 15.0

f Marry 20.0

g Wansi 41.0

h  Sidy  NaN

i Jason 37.0

j  Even 32.0

c)callable对象

选取第一列

>>> df[lambda df: df.columns[0]]

a   Joe

b   Mike

c   Jack

d   Rose

e  David

f  Marry

g  Wansi

h   Sidy

i  Jason

j   Even

Name: name, dtype: object

3 区域选取

区域选取可以从多个维度(行和列)对数据进行筛选,可以通过df.loc[],df.iloc[],df.ix[]三种方法实现。采用df.loc[],df.iloc[],df.ix[]这三种方法进行数据选取时,方括号内必须有两个参数,第一个参数是对行的筛选条件,第二个参数是对列的筛选条件,两个参数用逗号隔开。df.loc[],df.iloc[],df.ix[]的区别如下:

df.loc[]只能使用标签索引,不能使用整数索引,通过便签索引切边进行筛选时,前闭后闭。

df.iloc[]只能使用整数索引,不能使用标签索引,通过整数索引切边进行筛选时,前闭后开。;

df.ix[]既可以使用标签索引,也可以使用整数索引。

下面分别通过实例演示这三种方法。

3.1 df.loc[]

1)对行进行选取

选取索引为‘a'的行:

>>> df.loc['a', :]

name     Joe

age      25

gender     1

isMarried  yes

Name: a, dtype: object

选取索引为‘a'或‘b'或‘c'的行

>>> df.loc[['a','b','c'], :]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

c Jack 18.0    1    no

选取从‘a'到‘d'的所有行(包括‘d'行)

>>> df.loc['a':'d', :]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

c Jack 18.0    1    no

d Rose  NaN    1    yes

用布尔数组选取前3行

>>> df.loc[[True,True,True,False,False,False], :]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

c Jack 18.0    1    no

选取所有age大于30的行

>>> df.loc[df['age']>30,:]

  name  age gender isMarried

b  Mike 32.0    0    yes

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

也可以使用下面两方法:

>>> df.loc[df.loc[:,'age']>30, :]

  name  age gender isMarried

b  Mike 32.0    0    yes

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

>>> df.loc[df.iloc[:,1]>30, :]

  name  age gender isMarried

b  Mike 32.0    0    yes

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

用callable对象选取age大于30的所有行

>>> df.loc[lambda df:df['age'] > 30, :]

  name  age gender isMarried

b  Mike 32.0    0    yes

g Wansi 41.0    0    no

i Jason 37.0    1    no

j  Even 32.0    0    no

2)对列选取

输出所有人的姓名(选取name列)

>>> df.loc[:, 'name']

a   Joe

b   Mike

c   Jack

d   Rose

e  David

f  Marry

g  Wansi

h   Sidy

i  Jason

j   Even

Name: name, dtype: object

输出所有人的姓名和年龄(选取name和age列)

>>> df.loc[:, 'name':'age']

  name  age

a  Joe 25.0

b  Mike 32.0

c  Jack 18.0

d  Rose  NaN

e David 15.0

f Marry 20.0

g Wansi 41.0

h  Sidy  NaN

i Jason 37.0

j  Even 32.0

输出所有人的姓名、年龄、婚否(选取name、age、isMarried列)

>>> df.loc[:, ['name','age','isMarried']]

  name  age isMarried

a  Joe 25.0    yes

b  Mike 32.0    yes

c  Jack 18.0    no

d  Rose  NaN    yes

e David 15.0    no

f Marry 20.0    no

g Wansi 41.0    no

h  Sidy  NaN    yes

i Jason 37.0    no

j  Even 32.0    no

用布尔数组的方式选取前3列

>>> df.loc[:, [True,True,True,False]]

  name  age gender

a  Joe 25.0    1

b  Mike 32.0    0

c  Jack 18.0    1

d  Rose  NaN    1

e David 15.0    0

f Marry 20.0    1

g Wansi 41.0    0

h  Sidy  NaN    0

i Jason 37.0    1

j  Even 32.0    0

3)同时对行和列进行筛选

输出年龄大于30的人的姓名和年龄

>>> df.loc[df['age']>30,['name','age']]

  name  age

b  Mike 32.0

g Wansi 41.0

i Jason 37.0

j  Even 32.0

输出行名为‘Mike'或‘Marry'的姓名和年龄

>>> df.loc[(df['name']=='Mike') |(df['name']=='Marry'),['name','age']]                          

  name  age

b  Mike 32.0

f Marry 20.0

3.2 df.iloc[]

1)行选取

选取第2行

>>> df.iloc[1, :]

name     Mike

age      32

gender     0

isMarried   yes

Name: b, dtype: object

选取前3行

>>> df.iloc[:3, :]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

c Jack 18.0    1    no

选取第2行、第4行、第6行

>>> df.iloc[[1,3,5],:]

  name  age gender isMarried

b  Mike 32.0    0    yes

d  Rose  NaN    1    yes

f Marry 20.0    1    no

通过布尔数组选取前3行

>>> df.iloc[[True,True,True,False,False,False], :]

  name  age gender isMarried

a  Joe 25.0    1    yes

b Mike 32.0    0    yes

c Jack 18.0    1    no

2)列选取

选取第2列

>>> df.iloc[:, 1]

a  25.0

b  32.0

c  18.0

d   NaN

e  15.0

f  20.0

g  41.0

h   NaN

i  37.0

j  32.0

Name: age, dtype: float64

选取前3列

>>> df.iloc[:, 0:3]

  name  age gender

a  Joe 25.0    1

b  Mike 32.0    0

c  Jack 18.0    1

d  Rose  NaN    1

e David 15.0    0

f Marry 20.0    1

g Wansi 41.0    0

h  Sidy  NaN    0

i Jason 37.0    1

j  Even 32.0    0

l 选取第1列、第3列、第4列

选取第1列、第3列和第4列

>>> df.iloc[:, [0,2,3]]

  name gender isMarried

a  Joe    1    yes

b  Mike    0    yes

c  Jack    1    no

d  Rose    1    yes

e David    0    no

f Marry    1    no

g Wansi    0    no

h  Sidy    0    yes

i Jason    1    no

j  Even    0    no

通过布尔数组选取前3列

>>> df.iloc[:,[True,True,True,False]]
  name  age gender
a  Joe 25.0    1
b  Mike 32.0    0
c  Jack 18.0    1
d  Rose  NaN    1
e David 15.0    0
f Marry 20.0    1
g Wansi 41.0    0
h  Sidy  NaN    0
i Jason 37.0    1
j  Even 32.0    0

3)同时选取行和列

选取第2行的第1列、第3列、第4列

>>> df.iloc[1, [0,2,3]]

name     Mike

gender     0

isMarried   yes

Name: b, dtype: object

选取前3行的前3列

>>> df.iloc[:3, :3]

  name  age gender

a  Joe 25.0    1

b Mike 32.0    0

c Jack 18.0    1

3.3 df.ix[]

df.ix[]既可以通过整数索引进行数据选取,也可以通过标签索引进行数据选取,换句话说,df.ix[]是df.loc[]和df.iloc[]的功能集合,且在同义词选取中,可以同时使用整数索引和标签索引。

选取第3行的name数据

>>> df.ix[2,'name']
'Jack'

选取a行、c行的第1列,第2列和第4列数据

>>> df.ix[['a','c'], [0,1,3]]

  name  age isMarried

a  Joe 25.0    yes

c Jack 18.0    no

选取所有未婚者的姓名和年龄

>>> df.ix[df['isMarried']=='no',['name','age']]

  name  age

c  Jack 18.0

e David 15.0

f Marry 20.0

g Wansi 41.0

i Jason 37.0

j  Even 32.0

4 单元格选取

单元格选取包括df.at[]和df.iat[]两种方法。df.at[]和df.iat[]使用时必须输入两个参数,即行索引和列索引,其中df.at[]只能使用标签索引,df.iat[]只能使用整数索引。df.at[]和df.iat[]选取的都是单个单元格(单行单列),所以返回值都为基本数据类型。

4.1 df.at[]

选取b行的name列

>>> df.at['b','name']

'Mike'

4.2 df.iat[]

选取第2行第1列

>>> df.iat[1,0]

'Mike'

5 拓展与总结

1)选取某一整行(多个整行)或某一整列(多个整列)数据时,可以用df[]、df.loc[]、df.iloc[],此时df[]的方法书写要简单一些。

2)进行区域选取时,如果只能用标签索引,则使用df.loc[]或df.ix[],如果只能用整数索引,则用df.iloc[]或df.ix[]。不过我看到有资料说,不建议使用df.ix[],因为df.loc[]和df.iloc[]更精确(有吗?我没理解精确在哪,望告知)。

3)如果选取单元格,则df.at[]、df.iat[]、df.loc[]、df.iloc[]都可以,不过要注意参数。

4)选取数据时,返回值存在以下情况:

  • 如果返回值包括单行多列或多行单列时,返回值为Series对象;
  • 如果返回值包括多行多列时,返回值为DataFrame对象;
  • 如果返回值仅为一个单元格(单行单列)时,返回值为基本数据类型,例如str,int等。

5)df[]的方式只能选取行和列数据,不能精确到单元格,所以df[]的返回值一定DataFrame或Series对象。

6)当使用DataFrame的默认索引(整数索引)时,整数索引即为标签索引。例如,使用上面的data实例化一个DataFrame对象:

>>> df2 = pd.DataFrame(data)

>>> df2.loc[1,'name']

'Mike'

>>> df2.iloc[1,0]

'Mike'

到此这篇关于pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]的文章就介绍到这了,更多相关pandas 数据选取内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python3安装Scrapy的方法步骤
Nov 23 Python
opencv python 基于KNN的手写体识别的实例
Aug 03 Python
解决Python下imread,imwrite不支持中文的问题
Dec 05 Python
pandas修改DataFrame列名的实现方法
Feb 22 Python
Python中的几种矩阵乘法(小结)
Jul 10 Python
wxpython布局的实现方法
Nov 01 Python
基于python操作ES实例详解
Nov 16 Python
使用PyTorch训练一个图像分类器实例
Jan 08 Python
Django 解决上传文件时,request.FILES为空的问题
May 20 Python
使用python把xmind转换成excel测试用例的实现代码
Oct 12 Python
python游戏开发之pygame实现接球小游戏
Apr 22 Python
使用python生成大量数据写入es数据库并查询操作(2)
Sep 23 Python
python查找特定名称文件并按序号、文件名分行打印输出的方法
Apr 24 #Python
python 读取二进制 显示图片案例
Apr 24 #Python
150行python代码实现贪吃蛇游戏
Apr 24 #Python
用 Python 制作地球仪的方法
Apr 24 #Python
解决python中显示图片的plt.imshow plt.show()内存泄漏问题
Apr 24 #Python
基于打开pycharm有带图片md文件卡死问题的解决
Apr 24 #Python
解决Opencv+Python cv2.imshow闪退问题
Apr 24 #Python
You might like
提升PHP执行速度全攻略(上)
2006/10/09 PHP
PHP程序级守护进程的实现与优化的使用概述
2013/05/02 PHP
PHP CURL获取cookies模拟登录的方法
2013/11/04 PHP
php二分查找二种实现示例
2014/03/12 PHP
Add Formatted Data to a Spreadsheet
2007/06/12 Javascript
js实现权限树的更新权限时的全选全消功能
2009/02/17 Javascript
jQuery之按钮组件的深入解析
2013/06/19 Javascript
防止jQuery ajax Load使用缓存的方法小结
2014/02/22 Javascript
js实现连个数字相加而不是拼接的方法
2014/02/23 Javascript
手机端网页点击链接触发自动拨打或保存电话的示例代码
2014/08/15 Javascript
jQuery 浮动导航菜单适合购物商品类型的网站
2014/09/09 Javascript
Bootstrap布局之栅格系统详解
2016/06/13 Javascript
jQuery表格的维护和删除操作
2017/02/03 Javascript
使用Xcache缓存器加速PHP网站的配置方法
2017/04/22 Javascript
python实现查询IP地址所在地
2015/03/29 Python
解决python3中自定义wsgi函数,make_server函数报错的问题
2017/11/21 Python
python在ubuntu中的几种安装方法(小结)
2017/12/08 Python
解决Django数据库makemigrations有变化但是migrate时未变动问题
2018/05/30 Python
详解Django中间件执行顺序
2018/07/16 Python
Python按钮的响应事件详解
2019/03/04 Python
Python 获取windows桌面路径的5种方法小结
2019/07/15 Python
Python 继承,重写,super()调用父类方法操作示例
2019/09/29 Python
Python2与Python3的区别点整理
2019/12/12 Python
Python简单实现词云图代码及步骤解析
2020/06/04 Python
HTML5 input元素类型:email及url介绍
2013/08/13 HTML / CSS
瑞士灯具购物网站:Lampenwelt.ch
2018/07/08 全球购物
三星新西兰官网:Samsung新西兰
2019/03/05 全球购物
SCDKey德国:全球领先的数字游戏市场
2019/04/09 全球购物
室内设计专业个人的自我评价
2013/12/18 职场文书
职工运动会邀请函
2014/02/02 职场文书
小学社团活动总结
2014/06/27 职场文书
单位委托书怎么写
2014/08/02 职场文书
观后感的写法
2015/06/19 职场文书
2015年小学财务工作总结
2015/07/20 职场文书
竞聘书的秘诀
2019/04/02 职场文书
导游词之介休绵山
2019/12/31 职场文书