tensorflow模型转ncnn的操作方式


Posted in Python onMay 25, 2020

第一步把tensorflow保存的.ckpt模型转为pb模型, 并记下模型的输入输出名字.

第二步去ncnn的github上把仓库clone下来, 按照上面的要求装好依赖并make.

第三步是修改ncnn的CMakeList, 具体修改的位置有:

ncnn/CMakeList.txt 文件, 在文件开头处加入add_definitions(-std=c++11), 末尾处加上add_subdirectory(examples), 如果ncnn没有examples文件夹,就新建一个, 并加上CMakeList.txt文件.

ncnn/tools/CMakeList.txt 文件, 加入add_subdirectory(tensorflow)

原版的tools/tensorflow/tensorflow2ncnn.cpp里, 不支持tensorflow的elu, FusedBathNormalization, Conv2dBackpropback操作, 其实elu是支持的,只需要仿照relu的格式, 在.cpp文件里加上就行. FusedBatchNormalization就是ncnn/layer/里实现的batchnorm.cpp, 只是`tensorflow2ncnn里没有写上, 可以增加下面的内容:

else if (node.op() == "FusedBatchNorm")
{
 fprintf(pp, "%-16s", "BatchNorm");
}
...
else if (node.op() == "FusedBatchNorm")
{
 std::cout << "node name is FusedBatchNorm" << std::endl;
 tensorflow::TensorProto tensor;
 find_tensor_proto(weights, node, tensor);
 const tensorflow::TensorShapeProto& shape = tensor.tensor_shape();

 const tensorflow::TensorProto& gamma = weights[node.input(1)];
 const tensorflow::TensorProto& Beta = weights[node.input(2)];
 const tensorflow::TensorProto& mean = weights[node.input(3)];
 const tensorflow::TensorProto& var = weights[node.input(4)];

 int channels = gamma.tensor_shape().dim(0).size(); // data size
 int dtype = gamma.dtype();

 switch (dtype){
  case 1: 
  {

   const float * gamma_tensor = reinterpret_cast<const float *>(gamma.tensor_content().c_str());
   const float * mean_data = reinterpret_cast<const float *>(mean.tensor_content().c_str());
   const float * var_data = reinterpret_cast<const float *>(var.tensor_content().c_str());
   const float * b_data = reinterpret_cast<const float *>(Beta.tensor_content().c_str());
   for (int i=0; i< channels; ++i)
   {
    fwrite(gamma_tensor+i, sizeof(float), 1, bp);
   }
   for (int i=0; i< channels; ++i)
   {
    fwrite(mean_data+i, sizeof(float), 1, bp);
   }
   for (int i=0; i< channels; ++i)
   {
    fwrite(var_data+i, sizeof(float), 1, bp);
   }
   for (int i=0; i< channels; ++i)
   {
    fwrite(b_data+i, sizeof(float), 1, bp);
   }
  }
  default:
   std::cerr << "Type is not supported." << std::endl;

 }
 fprintf(pp, " 0=%d", channels);

 tensorflow::AttrValue value_epsilon;
 if (find_attr_value(node, "epsilon", value_epsilon)){
  float epsilon = value_epsilon.f();
  fprintf(pp, " 1=%f", epsilon);
 }
}

同理, Conv2dBackpropback其实就是ncnn里的反卷积操作, 只不过ncnn实现反卷积的操作和tensorflow内部实现反卷积的操作过程不一样, 但结果是一致的, 需要仿照普通卷积的写法加上去.

ncnn同样支持空洞卷积, 但无法识别tensorflow的空洞卷积, 具体原理可以看tensorflow空洞卷积的原理, tensorflow是改变featuremap做空洞卷积, 而ncnn是改变kernel做空洞卷积, 结果都一样. 需要对.proto文件修改即可完成空洞卷积.

总之ncnn对tensorflow的支持很不友好, 有的层还需要自己手动去实现, 还是很麻烦.

补充知识:pytorch模型转mxnet

介绍

gluon把mxnet再进行封装,封装的风格非常接近pytorch

使用gluon的好处是非常容易把pytorch模型向mxnet转化

唯一的问题是gluon封装还不成熟,封装好的layer不多,很多常用的layer 如concat,upsampling等layer都没有

这里关注如何把pytorch 模型快速转换成 mxnet基于symbol 和 exector设计的网络

pytorch转mxnet module

关键点:

mxnet 设计网络时symbol 名称要和pytorch初始化中各网络层名称对应

torch.load()读入pytorch模型checkpoint 字典,取当中的'state_dict'元素,也是一个字典

pytorch state_dict 字典中key是网络层参数的名称,val是参数ndarray

pytorch 的参数名称的组织形式和mxnet一样,但是连接符号不同,pytorch是'.',而mxnet是'_'比如:

pytorch '0.conv1.0.weight'
mxnet '0_conv1_0_weight'

pytorch 的参数array 和mxnet 的参数array 完全一样,只要名称对上,直接赋值即可初始化mxnet模型

需要做的有以下几点:

设计和pytorch网络对应的mxnet网络

加载pytorch checkpoint

调整pytorch checkpoint state_dict 的key名称和mxnet命名格式一致

FlowNet2S PytorchToMxnet

pytorch flownet2S 的checkpoint 可以在github上搜到

import mxnet as mx
from symbol_util import *
import pickle
 
def get_loss(data, label, loss_scale, name, get_input=False, is_sparse = False, type='stereo'):
 
 if type == 'stereo':
  data = mx.sym.Activation(data=data, act_type='relu',name=name+'relu')
 # loss
 if is_sparse:
  loss =mx.symbol.Custom(data=data, label=label, name=name, loss_scale= loss_scale, is_l1=True,
   op_type='SparseRegressionLoss')
 else:
  loss = mx.sym.MAERegressionOutput(data=data, label=label, name=name, grad_scale=loss_scale)
 return (loss,data) if get_input else loss
 
def flownet_s(loss_scale, is_sparse=False, name=''):
 img1 = mx.symbol.Variable('img1')
 img2 = mx.symbol.Variable('img2')
 data = mx.symbol.concat(img1,img2,dim=1)
 labels = {'loss{}'.format(i): mx.sym.Variable('loss{}_label'.format(i)) for i in range(0, 7)}
 # print('labels: ',labels)
 prediction = {}# a dict for loss collection
 loss = []#a list
 
 #normalize
 data = (data-125)/255
 
 # extract featrue
 conv1 = mx.sym.Convolution(data, pad=(3, 3), kernel=(7, 7), stride=(2, 2), num_filter=64, name=name + 'conv1_0')
 conv1 = mx.sym.LeakyReLU(data=conv1, act_type='leaky', slope=0.1)
 
 conv2 = mx.sym.Convolution(conv1, pad=(2, 2), kernel=(5, 5), stride=(2, 2), num_filter=128, name=name + 'conv2_0')
 conv2 = mx.sym.LeakyReLU(data=conv2, act_type='leaky', slope=0.1)
 
 conv3a = mx.sym.Convolution(conv2, pad=(2, 2), kernel=(5, 5), stride=(2, 2), num_filter=256, name=name + 'conv3_0')
 conv3a = mx.sym.LeakyReLU(data=conv3a, act_type='leaky', slope=0.1)
 
 conv3b = mx.sym.Convolution(conv3a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=256, name=name + 'conv3_1_0')
 conv3b = mx.sym.LeakyReLU(data=conv3b, act_type='leaky', slope=0.1)
 
 conv4a = mx.sym.Convolution(conv3b, pad=(1, 1), kernel=(3, 3), stride=(2, 2), num_filter=512, name=name + 'conv4_0')
 conv4a = mx.sym.LeakyReLU(data=conv4a, act_type='leaky', slope=0.1)
 
 conv4b = mx.sym.Convolution(conv4a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=512, name=name + 'conv4_1_0')
 conv4b = mx.sym.LeakyReLU(data=conv4b, act_type='leaky', slope=0.1)
 
 conv5a = mx.sym.Convolution(conv4b, pad=(1, 1), kernel=(3, 3), stride=(2, 2), num_filter=512, name=name + 'conv5_0')
 conv5a = mx.sym.LeakyReLU(data=conv5a, act_type='leaky', slope=0.1)
 
 conv5b = mx.sym.Convolution(conv5a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=512, name=name + 'conv5_1_0')
 conv5b = mx.sym.LeakyReLU(data=conv5b, act_type='leaky', slope=0.1)
 
 conv6a = mx.sym.Convolution(conv5b, pad=(1, 1), kernel=(3, 3), stride=(2, 2), num_filter=1024, name=name + 'conv6_0')
 conv6a = mx.sym.LeakyReLU(data=conv6a, act_type='leaky', slope=0.1)
 
 conv6b = mx.sym.Convolution(conv6a, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=1024,
        name=name + 'conv6_1_0')
 conv6b = mx.sym.LeakyReLU(data=conv6b, act_type='leaky', slope=0.1, )
 
 #predict flow
 pr6 = mx.sym.Convolution(conv6b, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow6')
 prediction['loss6'] = pr6
 
 upsample_pr6to5 = mx.sym.Deconvolution(pr6, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name=name + 'upsampled_flow6_to_5', no_bias=True)
 upconv5 = mx.sym.Deconvolution(conv6b, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=512,
         name=name + 'deconv5_0', no_bias=False)
 upconv5 = mx.sym.LeakyReLU(data=upconv5, act_type='leaky', slope=0.1)
 iconv5 = mx.sym.Concat(conv5b, upconv5, upsample_pr6to5, dim=1)
 
 
 pr5 = mx.sym.Convolution(iconv5, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow5')
 prediction['loss5'] = pr5
 
 upconv4 = mx.sym.Deconvolution(iconv5, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=256,
         name=name + 'deconv4_0', no_bias=False)
 upconv4 = mx.sym.LeakyReLU(data=upconv4, act_type='leaky', slope=0.1)
 
 upsample_pr5to4 = mx.sym.Deconvolution(pr5, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name=name + 'upsampled_flow5_to_4', no_bias=True)
 
 iconv4 = mx.sym.Concat(conv4b, upconv4, upsample_pr5to4)
 
 pr4 = mx.sym.Convolution(iconv4, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow4')
 prediction['loss4'] = pr4
 
 upconv3 = mx.sym.Deconvolution(iconv4, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=128,
         name=name + 'deconv3_0', no_bias=False)
 upconv3 = mx.sym.LeakyReLU(data=upconv3, act_type='leaky', slope=0.1)
 
 upsample_pr4to3 = mx.sym.Deconvolution(pr4, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name= name + 'upsampled_flow4_to_3', no_bias=True)
 iconv3 = mx.sym.Concat(conv3b, upconv3, upsample_pr4to3)
 
 pr3 = mx.sym.Convolution(iconv3, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow3')
 prediction['loss3'] = pr3
 
 upconv2 = mx.sym.Deconvolution(iconv3, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=64,
         name=name + 'deconv2_0', no_bias=False)
 upconv2 = mx.sym.LeakyReLU(data=upconv2, act_type='leaky', slope=0.1)
 
 upsample_pr3to2 = mx.sym.Deconvolution(pr3, pad=(1, 1), kernel=(4, 4), stride=(2, 2), num_filter=2,
           name=name + 'upsampled_flow3_to_2', no_bias=True)
 iconv2 = mx.sym.Concat(conv2, upconv2, upsample_pr3to2)
 
 pr2 = mx.sym.Convolution(iconv2, pad=(1, 1), kernel=(3, 3), stride=(1, 1), num_filter=2,
        name=name + 'predict_flow2')
 prediction['loss2'] = pr2
 flow = mx.sym.UpSampling(arg0=pr2,scale=4,num_filter=2,num_args = 1,sample_type='nearest', name='upsample_flow2_to_1')
 # ignore the loss functions with loss scale of zero
 keys = loss_scale.keys()
 # keys.sort()
 #obtain the symbol of the losses
 for key in keys:
  # loss.append(get_loss(prediction[key] * 20, labels[key], loss_scale[key], name=key + name,get_input=False, is_sparse=is_sparse, type='flow'))
  loss.append(mx.sym.MAERegressionOutput(data=prediction[key] * 20, label=labels[key], name=key + name, grad_scale=loss_scale[key]))
 # print('loss: ',loss)
 #group 暂时不知道为嘛要group
 loss_group =mx.sym.Group(loss)
 # print('net: ',loss_group)
 return loss_group,flow
 
import gluonbook as gb
import torch
from utils.frame_utils import *
import numpy as np
if __name__ == '__main__':
 checkpoint = torch.load("C:/Users/junjie.huang/PycharmProjects/flownet2_mxnet/flownet2_pytorch/FlowNet2-S_checkpoint.pth.tar")
 # # checkpoint是一个字典
 print(isinstance(checkpoint['state_dict'], dict))
 # # 打印checkpoint字典中的key名
 print('keys of checkpoint:')
 for i in checkpoint:
  print(i)
 print('')
 # # pytorch 模型参数保存在一个key名为'state_dict'的元素中
 state_dict = checkpoint['state_dict']
 # # state_dict也是一个字典
 print('keys of state_dict:')
 for i in state_dict:
  print(i)
  # print(state_dict[i].size())
 print('')
 # print(state_dict)
 #字典的value是torch.tensor
 print(torch.is_tensor(state_dict['conv1.0.weight']))
 #查看某个value的size
 print(state_dict['conv1.0.weight'].size())
 
 #flownet-mxnet init
 loss_scale={'loss2': 1.00,
    'loss3': 1.00,
    'loss4': 1.00,
    'loss5': 1.00,
    'loss6': 1.00}
 loss,flow = flownet_s(loss_scale=loss_scale,is_sparse=False)
 print('loss information: ')
 print('loss:',loss)
 print('type:',type(loss))
 print('list_arguments:',loss.list_arguments())
 print('list_outputs:',loss.list_outputs())
 print('list_inputs:',loss.list_inputs())
 print('')
 
 print('flow information: ')
 print('flow:',flow)
 print('type:',type(flow))
 print('list_arguments:',flow.list_arguments())
 print('list_outputs:',flow.list_outputs())
 print('list_inputs:',flow.list_inputs())
 print('')
 name_mxnet = symbol.list_arguments()
 print(type(name_mxnet))
 for key in name_mxnet:
  print(key)
 
 name_mxnet.sort()
 for key in name_mxnet:
  print(key)
 print(name_mxnet)
 
 shapes = (1, 3, 384, 512)
 ctx = gb.try_gpu()
 # exe = symbol.simple_bind(ctx=ctx, img1=shapes,img2=shapes)
 exe = flow.simple_bind(ctx=ctx, img1=shapes, img2=shapes)
 print('exe type: ',type(exe))
 print('exe: ',exe)
 #module
 # mod = mx.mod.Module(flow)
 # print('mod type: ', type(exe))
 # print('mod: ', exe)
 
 pim1 = read_gen("C:/Users/junjie.huang/PycharmProjects/flownet2_mxnet/data/0000007-img0.ppm")
 pim2 = read_gen("C:/Users/junjie.huang/PycharmProjects/flownet2_mxnet/data/0000007-img1.ppm")
 print(pim1.shape)
 
 '''使用pytorch 的state_dict 初始化 mxnet 模型参数'''
 for key in state_dict:
  # print(type(key))
  k_split = key.split('.')
  key_mx = '_'.join(k_split)
  # print(key,key_mx)
  try:
   exe.arg_dict[key_mx][:]=state_dict[key].data
  except:
   print(key,exe.arg_dict[key_mx].shape,state_dict[key].data.shape)
 
 exe.arg_dict['img1'][:] = pim1[np.newaxis, :, :, :].transpose(0, 3, 1, 2).data
 exe.arg_dict['img2'][:] = pim2[np.newaxis, :, :, :].transpose(0, 3, 1, 2).data
 
 result = exe.forward()
 print('result: ',type(result))
 # for tmp in result:
 #  print(type(tmp))
 #  print(tmp.shape)
 # color = flow2color(exe.outputs[0].asnumpy()[0].transpose(1, 2, 0))
 outputs = exe.outputs
 print('output type: ',type(outputs))
 # for tmp in outputs:
 #  print(type(tmp))
 #  print(tmp.shape)
 
 #来自pytroch flownet2
 from visualize import flow2color
 # color = flow2color(exe.outputs[0].asnumpy()[0].transpose(1,2,0))
 flow_color = flow2color(exe.outputs[0].asnumpy()[0].transpose(1, 2, 0))
 print('color type:',type(flow_color))
 import matplotlib.pyplot as plt
 #来自pytorch
 from torchvision.transforms import ToPILImage
 TF = ToPILImage()
 images = TF(flow_color)
 images.show()
 # plt.imshow(color)

以上这篇tensorflow模型转ncnn的操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python高级应用实例对比:高效计算大文件中的最长行的长度
Jun 08 Python
Python处理文本文件中控制字符的方法
Feb 07 Python
python docx 中文字体设置的操作方法
May 08 Python
python pandas实现excel转为html格式的方法
Oct 23 Python
python障碍式期权定价公式
Jul 19 Python
python随机生成库faker库api实例详解
Nov 28 Python
numpy.ndarray 实现对特定行或列取值
Dec 05 Python
Django media static外部访问Django中的图片设置教程
Apr 07 Python
python中pop()函数的语法与实例
Dec 01 Python
python实现图像随机裁剪的示例代码
Dec 10 Python
Pytorch 如何实现LSTM时间序列预测
May 17 Python
python实现学生信息管理系统(面向对象)
Jun 05 Python
MxNet预训练模型到Pytorch模型的转换方式
May 25 #Python
浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式
May 25 #Python
Pytorch通过保存为ONNX模型转TensorRT5的实现
May 25 #Python
tensorflow pb to tflite 精度下降详解
May 25 #Python
Python HTMLTestRunner测试报告view按钮失效解决方案
May 25 #Python
python用opencv完成图像分割并进行目标物的提取
May 25 #Python
Pytorch转tflite方式
May 25 #Python
You might like
php使用timthumb生成缩略图的方法
2016/01/22 PHP
jQuery中live方法的重复绑定说明
2011/10/21 Javascript
jquery怎样实现ajax联动框(二)
2013/03/08 Javascript
js从10种颜色中随机取色实现每次取出不同的颜色
2013/10/23 Javascript
JS实现侧悬浮浮动实例代码
2013/11/29 Javascript
jquery插件NProgress.js制作网页加载进度条
2015/06/05 Javascript
JavaScript模块化开发之SeaJS
2015/12/13 Javascript
AngularJS国际化详解及示例代码
2016/08/18 Javascript
微信小程序入门教程
2016/11/18 Javascript
JS实战篇之收缩菜单表单布局
2016/12/10 Javascript
解决vue+webpack打包路径的问题
2018/03/06 Javascript
基于layui轮播图满屏是高度自适应的解决方法
2019/09/16 Javascript
基于js实现的图片拖拽排序源码实例
2020/11/04 Javascript
如何在vue 中使用柱状图 并自修改配置
2021/01/21 Vue.js
详解微信小程序(Taro)手动埋点和自动埋点的实现
2021/03/02 Javascript
Python的Django框架使用入门指引
2015/04/15 Python
详解Python中with语句的用法
2015/04/15 Python
在Python的struct模块中进行数据格式转换的方法
2015/06/17 Python
Python中进程和线程的区别详解
2017/10/29 Python
python判断字符串是否是json格式方法分享
2017/11/07 Python
浅谈python之新式类
2018/08/12 Python
Python引用计数操作示例
2018/08/23 Python
pycharm运行程序时在Python console窗口中运行的方法
2018/12/03 Python
python 将dicom图片转换成jpg图片的实例
2020/01/13 Python
CSS3制作Dropdown下拉菜单的方法
2015/07/18 HTML / CSS
英国最大的户外商店:Go Outdoors
2019/04/17 全球购物
法国在线药房:DoctiPharma
2020/10/21 全球购物
Ooni英国官网:披萨烤箱
2020/05/31 全球购物
你经历的项目中的SCM配置项主要有哪些?什么是配置项?
2013/11/04 面试题
工程造价管理专业大专生求职信
2013/10/06 职场文书
应届专科生个人的自我评价
2014/01/05 职场文书
2015年小班保育员工作总结
2015/05/27 职场文书
单位同意报考证明
2015/06/17 职场文书
教你怎么用PyCharm为同一服务器配置多个python解释器
2021/05/31 Python
python中取整数的几种方法
2021/11/07 Python
Java 多态分析
2022/04/26 Java/Android