基于Python共轭梯度法与最速下降法之间的对比


Posted in Python onApril 02, 2020

在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,在前面的某个文章中,我们给出了牛顿法和最速下降法的比较,牛顿法需要初值点在最优点附近,条件较为苛刻。

算法来源:《数值最优化方法》高立,P111

我们选用了64维的二次函数来作为验证函数,具体参见上书111页。

采用的三种方法为:

共轭梯度方法(FR格式)、共轭梯度法(PRP格式)、最速下降法

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 15:01:54 2016
@author: zhangweiguo
"""
import sympy,numpy
import math
import matplotlib.pyplot as pl
from mpl_toolkits.mplot3d import Axes3D as ax3
import SD#这个文件里有最速下降法SD的方法,参见前面的博客
#共轭梯度法FR、PRP两种格式
def CG_FR(x0,N,E,f,f_d):
  X=x0;Y=[];Y_d=[];
  n = 1
  ee = f_d(x0)
  e=(ee[0]**2+ee[1]**2)**0.5
  d=-f_d(x0)
  Y.append(f(x0)[0,0]);Y_d.append(e)
  a=sympy.Symbol('a',real=True)
  print '第%2s次迭代:e=%f' % (n, e)
  while n<N and e>E:
    n=n+1
    g1=f_d(x0)
    f1=f(x0+a*f_d(x0))
    a0=sympy.solve(sympy.diff(f1[0,0],a,1))
    x0=x0-d*a0
    X=numpy.c_[X,x0];Y.append(f(x0)[0,0])
    ee = f_d(x0)
    e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
    Y_d.append(e)
    g2=f_d(x0)
    beta=(numpy.dot(g2.T,g2))/numpy.dot(g1.T,g1)
    d=-f_d(x0)+beta*d
    print '第%2s次迭代:e=%f'%(n,e)
  return X,Y,Y_d
def CG_PRP(x0,N,E,f,f_d):
  X=x0;Y=[];Y_d=[];
  n = 1
  ee = f_d(x0)
  e=(ee[0]**2+ee[1]**2)**0.5
  d=-f_d(x0)
  Y.append(f(x0)[0,0]);Y_d.append(e)
  a=sympy.Symbol('a',real=True)
  print '第%2s次迭代:e=%f' % (n, e)
  while n<N and e>E:
    n=n+1
    g1=f_d(x0)
    f1=f(x0+a*f_d(x0))
    a0=sympy.solve(sympy.diff(f1[0,0],a,1))
    x0=x0-d*a0
    X=numpy.c_[X,x0];Y.append(f(x0)[0,0])
    ee = f_d(x0)
    e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
    Y_d.append(e)
    g2=f_d(x0)
    beta=(numpy.dot(g2.T,g2-g1))/numpy.dot(g1.T,g1)
    d=-f_d(x0)+beta*d
    print '第%2s次迭代:e=%f'%(n,e)
  return X,Y,Y_d
if __name__=='__main__':
  '''
  G=numpy.array([[21.0,4.0],[4.0,15.0]])
  #G=numpy.array([[21.0,4.0],[4.0,1.0]])
  b=numpy.array([[2.0],[3.0]])
  c=10.0
  x0=numpy.array([[-10.0],[100.0]])
  '''
  
  m=4
  T=6*numpy.eye(m)
  T[0,1]=-1;T[m-1,m-2]=-1
  for i in xrange(1,m-1):
    T[i,i+1]=-1
    T[i,i-1]=-1
  W=numpy.zeros((m**2,m**2))
  W[0:m,0:m]=T
  W[m**2-m:m**2,m**2-m:m**2]=T
  W[0:m,m:2*m]=-numpy.eye(m)
  W[m**2-m:m**2,m**2-2*m:m**2-m]=-numpy.eye(m)
  for i in xrange(1,m-1):
    W[i*m:(i+1)*m,i*m:(i+1)*m]=T
    W[i*m:(i+1)*m,i*m+m:(i+1)*m+m]=-numpy.eye(m)
    W[i*m:(i+1)*m,i*m-m:(i+1)*m-m]=-numpy.eye(m)
  mm=m**2
  mmm=m**3
  G=numpy.zeros((mmm,mmm))
  G[0:mm,0:mm]=W;G[mmm-mm:mmm,mmm-mm:mmm]=W;
  G[0:mm,mm:2*mm]=-numpy.eye(mm)
  G[mmm-mm:mmm,mmm-2*mm:mmm-mm]=-numpy.eye(mm)
  for i in xrange(1,m-1):
    G[i*mm:(i+1)*mm,i*mm:(i+1)*mm]=W
    G[i*mm:(i+1)*mm,i*mm-mm:(i+1)*mm-mm]=-numpy.eye(mm)
    G[i*mm:(i+1)*mm,i*mm+mm:(i+1)*mm+mm]=-numpy.eye(mm)
  x_goal=numpy.ones((mmm,1))
  b=-numpy.dot(G,x_goal)
  c=0
  f = lambda x: 0.5 * (numpy.dot(numpy.dot(x.T, G), x)) + numpy.dot(b.T, x) + c
  f_d = lambda x: numpy.dot(G, x) + b
  x0=x_goal+numpy.random.rand(mmm,1)*100
  N=100
  E=10**(-6)
  print '共轭梯度PR'
  X1, Y1, Y_d1=CG_FR(x0,N,E,f,f_d)
  print '共轭梯度PBR'
  X2, Y2, Y_d2=CG_PRP(x0,N,E,f,f_d)
  figure1=pl.figure('trend')
  n1=len(Y1)
  n2=len(Y2)
  x1=numpy.arange(1,n1+1)
  x2=numpy.arange(1,n2+1)
  
  X3, Y3, Y_d3=SD.SD(x0,N,E,f,f_d)
  n3=len(Y3)
  x3=range(1,n3+1)
  pl.semilogy(x3,Y3,'g*',markersize=10,label='SD:'+str(n3))
  pl.semilogy(x1,Y1,'r*',markersize=10,label='CG-FR:'+str(n1))
  pl.semilogy(x2,Y2,'b*',markersize=10,label='CG-PRP:'+str(n2))
  pl.legend()
  #图像显示了三种不同的方法各自迭代的次数与最优值变化情况,共轭梯度方法是明显优于最速下降法的
  pl.xlabel('n')
  pl.ylabel('f(x)')
  pl.show()

最优值变化趋势:

基于Python共轭梯度法与最速下降法之间的对比

从图中可以看出,最速下降法SD的迭代次数是最多的,在与共轭梯度(FR与PRP两种方法)的比较中,明显较差。

补充知识:python实现牛顿迭代法和二分法求平方根,精确到小数点后无限多位-4

首先来看一下牛顿迭代法求平方根的过程:计算3的平方根

基于Python共轭梯度法与最速下降法之间的对比

如图,是求根号3的牛顿迭代法过程。这里使用的初始迭代值(也就是猜测值)为1,其实可以为任何值最终都能得到结果。每次开始,先检测猜测值是否合理,不合理时,用上面的平均值来换掉猜测值,依次继续迭代,直到猜测值合理。

原理:现在取一个猜测值 a, 如果猜测值合理的话,那么就有a^2=x,即x/a=a ,x为被开方数。不合理的话呢,就用表中的猜测值和商的平均值来换掉猜测值。当不合理时,比如 a>真实值,那么x/a<真实值,这时候取a 与 x/a 的平均值来代替a的话,那么新的a就会比原来的a要更接近真实值。同理有 a<真实值 的情况。于是,这样不断迭代下去最终是一个a不断收敛到真实值的一个过程。于是不断迭代就能得到真实值,证明了迭代法是正确的。

附上我的python代码:

利用python整数运算,python整数可以无限大,可以实现小数点后无限多位

#二分法求x的平方根小数点下任意K位数的精准值,利用整数运算 #思想:利用二分法,每次乘以10,取中间值,比较大小,从而定位精确值的范围,将根扩大10倍,则被开方数扩大100倍。 #quotient(商)牛顿迭代法:先猜测一个值,再求商,然后用猜测值和商的中间值代替猜测值,扩大倍数,继续进行。

import math
from math import sqrt
 
def check_precision(l,h,p,len1):#检查是否达到了精确位
  l=str(l);h=str(h)
  if len(l)<=len1+p or len(h)<=len1+p:
    return False
  for i in range(len1,p+len1):#检查小数点后面的p个数是否相等
    if l[i]!=h[i]:     #当l和h某一位不相等时,说明没有达到精确位
      return False
  return True
 
def print_result(x,len1,p):
  x=str(x)
  if len(x)-len1<p:#没有达到要求的精度就已经找出根
    s=x[:len1]+"."+x[len1:]+'0'*(p-len(x)+len1)
  else:s=x[:len1]+"."+x[len1:len1+p]
  print(s)
 
def binary_sqrt(x,p):
  x0=int(sqrt(x))
  if x0*x0==x: #完全平方数直接开方,不用继续进行
    print_result(x0,len(str(x0)),p)
    return 
  len1=len(str(x0))#找出整数部分的长度
  l=0;h=x
  while(not check_precision(l,h,p,len1)):#没有达到精确位,继续循环
    if not l==0:#第一次l=0,h=x时不用乘以10,直接取中间值
      h=h*10 #l,h每次扩大10倍
      l=l*10
      x=x*100 #x每次要扩大100倍,因为平方
    m=(l+h)//2
    if m*m==x:
      return print_result(m,len1,p)
    elif m*m>x:
      h=m
    else:
      l=m
  return print_result(l,len1,p)#当达到了要求的精度,直接返回l
 
#牛顿迭代法求平方根
def newton_sqrt(x,p):
  x0=int(sqrt(x))
  if x0*x0==x: #完全平方数直接开方,不用继续进行
    print_result(x0,len(str(x0)),p)
    return
  len1=len(str(x0))#找出整数部分的长度
  g=1;q=x//g;g=(g+q)//2
  while(not check_precision(g,q,p,len1)):
    x=x*100
    g=g*10
    q=x//g   #求商
    g=(g+q)//2 #更新猜测值为猜测值和商的中间值
  return print_result(g,len1,p)
 
while True:  
  x=int(input("请输入待开方数:"))
  p=int(input("请输入精度:"))
  print("binary_sqrt:",end="")
  binary_sqrt(x,p)
  print("newton_sqrt:",end="")
  newton_sqrt(x,p)

以上这篇基于Python共轭梯度法与最速下降法之间的对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python使用剪切板的方法
Jun 06 Python
python利用有道翻译实现&quot;语言翻译器&quot;的功能实例
Nov 14 Python
python绘制立方体的方法
Jul 02 Python
python+Splinter实现12306抢票功能
Sep 25 Python
详解Python进阶之切片的误区与高级用法
Dec 24 Python
判断python对象是否可调用的三种方式及其区别详解
Jan 31 Python
pyqt远程批量执行Linux命令程序的方法
Feb 14 Python
python3模拟实现xshell远程执行liunx命令的方法
Jul 12 Python
python 画出使用分类器得到的决策边界
Aug 21 Python
Python3之字节串bytes与字节数组bytearray的使用详解
Aug 27 Python
python对常见数据类型的遍历解析
Aug 27 Python
python爬虫beautifulsoup库使用操作教程全解(python爬虫基础入门)
Feb 19 Python
python 的topk算法实例
Apr 02 #Python
python torch.utils.data.DataLoader使用方法
Apr 02 #Python
Python基于stuck实现scoket文件传输
Apr 02 #Python
Python要求O(n)复杂度求无序列表中第K的大元素实例
Apr 02 #Python
Pytorch 使用不同版本的cuda的方法步骤
Apr 02 #Python
pytorch 中的重要模块化接口nn.Module的使用
Apr 02 #Python
python递归函数求n的阶乘,优缺点及递归次数设置方式
Apr 02 #Python
You might like
array_multisort实现PHP多维数组排序示例讲解
2011/01/04 PHP
PHP IDE PHPStorm配置支持友好Laravel代码提示方法
2015/05/12 PHP
PHP递归统计系统中代码行数
2019/09/19 PHP
php中关于换行的实例写法
2019/09/26 PHP
TP5框架安全机制实例分析
2020/04/05 PHP
PJBlog插件 防刷新的在线播放器
2006/10/25 Javascript
遨游,飞飞,IE,空中网 浏览器无提示关闭方法
2011/07/11 Javascript
js给dropdownlist添加选项的小例子
2013/03/04 Javascript
jQuery实现图片信息的浮动显示实例代码
2013/08/28 Javascript
遍历DOM对象内的元素属性示例代码
2014/02/08 Javascript
PassWord输入框代码分享
2016/06/07 Javascript
Javascript动画效果(1)
2016/10/11 Javascript
移动端刮刮乐的实现方式(js+HTML5)
2017/03/23 Javascript
详解vue axios中文文档
2017/09/12 Javascript
基于Vue2.0+ElementUI实现表格翻页功能
2017/10/23 Javascript
Vue实现搜索 和新闻列表功能简单范例
2018/03/16 Javascript
微信小程序使用gitee进行版本管理
2018/09/20 Javascript
使用webpack将ES6转化ES5的实现方法
2019/10/13 Javascript
vue-i18n实现中英文切换的方法
2020/07/06 Javascript
Vue+element+cookie记住密码功能的简单实现方法
2020/09/20 Javascript
Python获取电脑硬件信息及状态的实现方法
2014/08/29 Python
python3操作mysql数据库的方法
2017/06/23 Python
Python3使用turtle绘制超立方体图形示例
2018/06/19 Python
python爬虫开发之PyQuery模块详细使用方法与实例全解
2020/03/09 Python
基于CSS3实现立方体自转效果
2016/03/01 HTML / CSS
HTML5的结构和语义(5):交互
2008/10/17 HTML / CSS
英国在线汽车和面包车零件商店:Car Parts 4 Less
2018/08/15 全球购物
匡威荷兰官方网站:Converse荷兰
2018/10/24 全球购物
法学院毕业生求职信
2014/06/25 职场文书
银行进社区活动总结
2014/07/07 职场文书
辩护词格式
2015/05/22 职场文书
人生一定要学会的三样东西:放下、忘记、珍惜
2019/08/21 职场文书
mysql连接查询中and与where的区别浅析
2021/07/01 MySQL
java executor包参数处理功能 
2022/02/15 Java/Android
vue递归实现树形组件
2022/07/15 Vue.js
springboot+rabbitmq实现智能家居实例详解
2022/07/23 Java/Android