基于Python共轭梯度法与最速下降法之间的对比


Posted in Python onApril 02, 2020

在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,在前面的某个文章中,我们给出了牛顿法和最速下降法的比较,牛顿法需要初值点在最优点附近,条件较为苛刻。

算法来源:《数值最优化方法》高立,P111

我们选用了64维的二次函数来作为验证函数,具体参见上书111页。

采用的三种方法为:

共轭梯度方法(FR格式)、共轭梯度法(PRP格式)、最速下降法

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 15:01:54 2016
@author: zhangweiguo
"""
import sympy,numpy
import math
import matplotlib.pyplot as pl
from mpl_toolkits.mplot3d import Axes3D as ax3
import SD#这个文件里有最速下降法SD的方法,参见前面的博客
#共轭梯度法FR、PRP两种格式
def CG_FR(x0,N,E,f,f_d):
  X=x0;Y=[];Y_d=[];
  n = 1
  ee = f_d(x0)
  e=(ee[0]**2+ee[1]**2)**0.5
  d=-f_d(x0)
  Y.append(f(x0)[0,0]);Y_d.append(e)
  a=sympy.Symbol('a',real=True)
  print '第%2s次迭代:e=%f' % (n, e)
  while n<N and e>E:
    n=n+1
    g1=f_d(x0)
    f1=f(x0+a*f_d(x0))
    a0=sympy.solve(sympy.diff(f1[0,0],a,1))
    x0=x0-d*a0
    X=numpy.c_[X,x0];Y.append(f(x0)[0,0])
    ee = f_d(x0)
    e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
    Y_d.append(e)
    g2=f_d(x0)
    beta=(numpy.dot(g2.T,g2))/numpy.dot(g1.T,g1)
    d=-f_d(x0)+beta*d
    print '第%2s次迭代:e=%f'%(n,e)
  return X,Y,Y_d
def CG_PRP(x0,N,E,f,f_d):
  X=x0;Y=[];Y_d=[];
  n = 1
  ee = f_d(x0)
  e=(ee[0]**2+ee[1]**2)**0.5
  d=-f_d(x0)
  Y.append(f(x0)[0,0]);Y_d.append(e)
  a=sympy.Symbol('a',real=True)
  print '第%2s次迭代:e=%f' % (n, e)
  while n<N and e>E:
    n=n+1
    g1=f_d(x0)
    f1=f(x0+a*f_d(x0))
    a0=sympy.solve(sympy.diff(f1[0,0],a,1))
    x0=x0-d*a0
    X=numpy.c_[X,x0];Y.append(f(x0)[0,0])
    ee = f_d(x0)
    e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
    Y_d.append(e)
    g2=f_d(x0)
    beta=(numpy.dot(g2.T,g2-g1))/numpy.dot(g1.T,g1)
    d=-f_d(x0)+beta*d
    print '第%2s次迭代:e=%f'%(n,e)
  return X,Y,Y_d
if __name__=='__main__':
  '''
  G=numpy.array([[21.0,4.0],[4.0,15.0]])
  #G=numpy.array([[21.0,4.0],[4.0,1.0]])
  b=numpy.array([[2.0],[3.0]])
  c=10.0
  x0=numpy.array([[-10.0],[100.0]])
  '''
  
  m=4
  T=6*numpy.eye(m)
  T[0,1]=-1;T[m-1,m-2]=-1
  for i in xrange(1,m-1):
    T[i,i+1]=-1
    T[i,i-1]=-1
  W=numpy.zeros((m**2,m**2))
  W[0:m,0:m]=T
  W[m**2-m:m**2,m**2-m:m**2]=T
  W[0:m,m:2*m]=-numpy.eye(m)
  W[m**2-m:m**2,m**2-2*m:m**2-m]=-numpy.eye(m)
  for i in xrange(1,m-1):
    W[i*m:(i+1)*m,i*m:(i+1)*m]=T
    W[i*m:(i+1)*m,i*m+m:(i+1)*m+m]=-numpy.eye(m)
    W[i*m:(i+1)*m,i*m-m:(i+1)*m-m]=-numpy.eye(m)
  mm=m**2
  mmm=m**3
  G=numpy.zeros((mmm,mmm))
  G[0:mm,0:mm]=W;G[mmm-mm:mmm,mmm-mm:mmm]=W;
  G[0:mm,mm:2*mm]=-numpy.eye(mm)
  G[mmm-mm:mmm,mmm-2*mm:mmm-mm]=-numpy.eye(mm)
  for i in xrange(1,m-1):
    G[i*mm:(i+1)*mm,i*mm:(i+1)*mm]=W
    G[i*mm:(i+1)*mm,i*mm-mm:(i+1)*mm-mm]=-numpy.eye(mm)
    G[i*mm:(i+1)*mm,i*mm+mm:(i+1)*mm+mm]=-numpy.eye(mm)
  x_goal=numpy.ones((mmm,1))
  b=-numpy.dot(G,x_goal)
  c=0
  f = lambda x: 0.5 * (numpy.dot(numpy.dot(x.T, G), x)) + numpy.dot(b.T, x) + c
  f_d = lambda x: numpy.dot(G, x) + b
  x0=x_goal+numpy.random.rand(mmm,1)*100
  N=100
  E=10**(-6)
  print '共轭梯度PR'
  X1, Y1, Y_d1=CG_FR(x0,N,E,f,f_d)
  print '共轭梯度PBR'
  X2, Y2, Y_d2=CG_PRP(x0,N,E,f,f_d)
  figure1=pl.figure('trend')
  n1=len(Y1)
  n2=len(Y2)
  x1=numpy.arange(1,n1+1)
  x2=numpy.arange(1,n2+1)
  
  X3, Y3, Y_d3=SD.SD(x0,N,E,f,f_d)
  n3=len(Y3)
  x3=range(1,n3+1)
  pl.semilogy(x3,Y3,'g*',markersize=10,label='SD:'+str(n3))
  pl.semilogy(x1,Y1,'r*',markersize=10,label='CG-FR:'+str(n1))
  pl.semilogy(x2,Y2,'b*',markersize=10,label='CG-PRP:'+str(n2))
  pl.legend()
  #图像显示了三种不同的方法各自迭代的次数与最优值变化情况,共轭梯度方法是明显优于最速下降法的
  pl.xlabel('n')
  pl.ylabel('f(x)')
  pl.show()

最优值变化趋势:

基于Python共轭梯度法与最速下降法之间的对比

从图中可以看出,最速下降法SD的迭代次数是最多的,在与共轭梯度(FR与PRP两种方法)的比较中,明显较差。

补充知识:python实现牛顿迭代法和二分法求平方根,精确到小数点后无限多位-4

首先来看一下牛顿迭代法求平方根的过程:计算3的平方根

基于Python共轭梯度法与最速下降法之间的对比

如图,是求根号3的牛顿迭代法过程。这里使用的初始迭代值(也就是猜测值)为1,其实可以为任何值最终都能得到结果。每次开始,先检测猜测值是否合理,不合理时,用上面的平均值来换掉猜测值,依次继续迭代,直到猜测值合理。

原理:现在取一个猜测值 a, 如果猜测值合理的话,那么就有a^2=x,即x/a=a ,x为被开方数。不合理的话呢,就用表中的猜测值和商的平均值来换掉猜测值。当不合理时,比如 a>真实值,那么x/a<真实值,这时候取a 与 x/a 的平均值来代替a的话,那么新的a就会比原来的a要更接近真实值。同理有 a<真实值 的情况。于是,这样不断迭代下去最终是一个a不断收敛到真实值的一个过程。于是不断迭代就能得到真实值,证明了迭代法是正确的。

附上我的python代码:

利用python整数运算,python整数可以无限大,可以实现小数点后无限多位

#二分法求x的平方根小数点下任意K位数的精准值,利用整数运算 #思想:利用二分法,每次乘以10,取中间值,比较大小,从而定位精确值的范围,将根扩大10倍,则被开方数扩大100倍。 #quotient(商)牛顿迭代法:先猜测一个值,再求商,然后用猜测值和商的中间值代替猜测值,扩大倍数,继续进行。

import math
from math import sqrt
 
def check_precision(l,h,p,len1):#检查是否达到了精确位
  l=str(l);h=str(h)
  if len(l)<=len1+p or len(h)<=len1+p:
    return False
  for i in range(len1,p+len1):#检查小数点后面的p个数是否相等
    if l[i]!=h[i]:     #当l和h某一位不相等时,说明没有达到精确位
      return False
  return True
 
def print_result(x,len1,p):
  x=str(x)
  if len(x)-len1<p:#没有达到要求的精度就已经找出根
    s=x[:len1]+"."+x[len1:]+'0'*(p-len(x)+len1)
  else:s=x[:len1]+"."+x[len1:len1+p]
  print(s)
 
def binary_sqrt(x,p):
  x0=int(sqrt(x))
  if x0*x0==x: #完全平方数直接开方,不用继续进行
    print_result(x0,len(str(x0)),p)
    return 
  len1=len(str(x0))#找出整数部分的长度
  l=0;h=x
  while(not check_precision(l,h,p,len1)):#没有达到精确位,继续循环
    if not l==0:#第一次l=0,h=x时不用乘以10,直接取中间值
      h=h*10 #l,h每次扩大10倍
      l=l*10
      x=x*100 #x每次要扩大100倍,因为平方
    m=(l+h)//2
    if m*m==x:
      return print_result(m,len1,p)
    elif m*m>x:
      h=m
    else:
      l=m
  return print_result(l,len1,p)#当达到了要求的精度,直接返回l
 
#牛顿迭代法求平方根
def newton_sqrt(x,p):
  x0=int(sqrt(x))
  if x0*x0==x: #完全平方数直接开方,不用继续进行
    print_result(x0,len(str(x0)),p)
    return
  len1=len(str(x0))#找出整数部分的长度
  g=1;q=x//g;g=(g+q)//2
  while(not check_precision(g,q,p,len1)):
    x=x*100
    g=g*10
    q=x//g   #求商
    g=(g+q)//2 #更新猜测值为猜测值和商的中间值
  return print_result(g,len1,p)
 
while True:  
  x=int(input("请输入待开方数:"))
  p=int(input("请输入精度:"))
  print("binary_sqrt:",end="")
  binary_sqrt(x,p)
  print("newton_sqrt:",end="")
  newton_sqrt(x,p)

以上这篇基于Python共轭梯度法与最速下降法之间的对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Django imgareaselect手动剪切头像实现方法
May 26 Python
Python中Django 后台自定义表单控件
Mar 28 Python
Python定时器实例代码
Nov 01 Python
Python实现针对给定单链表删除指定节点的方法
Apr 12 Python
python+pandas+时间、日期以及时间序列处理方法
Jul 10 Python
django 将model转换为字典的方法示例
Oct 16 Python
Python动态参数/命名空间/函数嵌套/global和nonlocal
May 29 Python
浅谈Python2之汉字编码为unicode的问题(即类似\xc3\xa4)
Aug 12 Python
Python 读取WAV音频文件 画频谱的实例
Mar 14 Python
matplotlib quiver箭图绘制案例
Apr 17 Python
详解Python中Pyyaml模块的使用
Oct 08 Python
Python多个MP4合成视频的实现方法
Jul 16 Python
python 的topk算法实例
Apr 02 #Python
python torch.utils.data.DataLoader使用方法
Apr 02 #Python
Python基于stuck实现scoket文件传输
Apr 02 #Python
Python要求O(n)复杂度求无序列表中第K的大元素实例
Apr 02 #Python
Pytorch 使用不同版本的cuda的方法步骤
Apr 02 #Python
pytorch 中的重要模块化接口nn.Module的使用
Apr 02 #Python
python递归函数求n的阶乘,优缺点及递归次数设置方式
Apr 02 #Python
You might like
IIS6+PHP5+MySQL5+Zend Optimizer+phpMyAdmin安装配置图文教程 2009年
2009/06/08 PHP
PHP中使用数组实现堆栈数据结构的代码
2012/02/05 PHP
PHP CodeBase:将时间显示为&quot;刚刚&quot;&quot;n分钟/小时前&quot;的方法详解
2013/06/06 PHP
Windows下Apache + PHP SESSION丢失的解决过程全纪录
2015/04/07 PHP
Thinkphp框架开发移动端接口(2)
2016/08/18 PHP
PHP基于DateTime类解决Unix时间戳与日期互转问题【针对1970年前及2038年后时间戳】
2018/06/13 PHP
如何运行/调试你的PHP代码
2020/10/23 PHP
JQuery 风格的HTML文本转义
2009/07/01 Javascript
异步动态加载JS并运行(示例代码)
2013/12/13 Javascript
jquery 为a标签绑定click事件示例代码
2014/06/23 Javascript
JavaScript Promise启示录
2014/08/12 Javascript
JavaScript实现设计模式中的单例模式的一些技巧总结
2016/05/17 Javascript
再谈Javascript中的基本类型和引用类型(推荐)
2016/07/01 Javascript
AngularJS实现标签页的两种方式
2016/09/05 Javascript
html中鼠标滚轮事件onmousewheel的处理方法
2016/11/11 Javascript
基于vue.js 2.x的虚拟滚动条的示例代码
2018/01/23 Javascript
js实现转动骰子模型
2019/10/24 Javascript
通过javascript实现扫雷游戏代码实例
2020/02/09 Javascript
[00:10]DOTA2 TI9勇士令状明日上线
2019/05/07 DOTA
python实现动态创建类的方法分析
2019/06/25 Python
python datetime中strptime用法详解
2019/08/29 Python
python+gdal+遥感图像拼接(mosaic)的实例
2020/03/10 Python
python数据处理——对pandas进行数据变频或插值实例
2020/04/22 Python
Python局部变量与全局变量区别原理解析
2020/07/14 Python
可自定义箭头样式的CSS3气泡提示框
2016/03/16 HTML / CSS
C#笔试题集合
2013/06/21 面试题
期末自我鉴定
2014/02/02 职场文书
食品销售计划书
2014/04/26 职场文书
捐款活动总结
2014/08/27 职场文书
2014年庆祝国庆65周年演讲稿
2014/09/21 职场文书
四年级数学上册教学计划
2015/01/20 职场文书
感谢师恩主题班会
2015/08/17 职场文书
初中团支书竞选稿
2015/11/21 职场文书
html5 录制mp3音频支持采样率和比特率设置
2021/07/15 Javascript
Java中Dijkstra(迪杰斯特拉)算法
2022/05/20 Java/Android
MySQL中JOIN连接的基本用法实例
2022/06/05 MySQL