使用python实现哈希表、字典、集合操作


Posted in Python onDecember 22, 2019

哈希表

哈希表(Hash Table, 又称为散列表),是一种线性表的存储结构。哈希表由一个直接寻址表和一个哈希函数组成。哈希函数h(k)将元素关键字k作为自变量,返回元素的存储下标。

简单哈希函数:

除法哈希:h(k) = k mod m乘法哈希:h(k) = floor(m(kA mod 1)) 0<A<1

假设有一个长度为7的数组,哈希函数h(k) = k mod 7,元素集合{14, 22, 3, 5}的存储方式如下图:

使用python实现哈希表、字典、集合操作

哈希冲突

由于哈希表的大小是有限的,而要存储的值的总数量是无限的,因此对于任何哈希函数,都会出现两个不同的元素映射到同一个位置上的情况,这种情况叫做哈希冲突。

比如:h(k) = k mod 7, h(0) = h(7) = h(14) = ...

解决哈希冲突--开放寻址法

开放寻址法:如果哈希函数返回的位置已经有值,则可以向后探查新的位置来存储这个值

线性探查:如果位置i被占用,则探查i+1, i+2,...二次探查:如果位置i被占用,则探查i+12, i-12, i+22, i-22,...二度哈希:有n个哈希函数,当使用第一个哈希函数h1发生冲突时,则尝试使用h2, h3,...

解决哈希冲突--拉链法

拉链法:哈希表每一个位置都连接一个链表,当冲突发生时,冲突的元素将被加到该位置链表的最后。

使用python实现哈希表、字典、集合操作

哈希表的实现

class Array(object):

 def __init__(self, size=32, init=None):
  self._size = size
  self._items = [init] * size

 def __getitem__(self, index):
  return self._items[index]

 def __setitem__(self, index, value):
  self._items[index] = value

 def __len__(self):
  return self._size

 def clear(self, value=None):
  for i in range(len(self._items)):
   self._items[i] = value

 def __iter__(self):
  for item in self._items:
   yield item


class Slot(object):
 """
 定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置)
 hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。

 注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。
 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了
 2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找
 3.槽正在使用 Slot 节点
 """

 def __init__(self, key, value):
  self.key, self.value = key, value


class HashTable(object):
 UNUSED = None # 没被使用过
 EMPTY = Slot(None, None) # 使用却被删除过

 def __init__(self):
  self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方
  self.length = 0

 @property
 def _load_factor(self):
  # load_factor 超过 0.8 重新分配
  return self.length / float(len(self._table))

 def __len__(self):
  return self.length

 # 进行哈希
 def _hash(self, key):
  return abs(hash(key)) % len(self._table)

 # 查找key
 def _find_key(self, key):
  """
  解释一个 slot 为 UNUSED 和 EMPTY 的区别
  因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了,
  首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。
  然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B,
  第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。
  但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。
  """
  origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素
  _len = len(self._table)
  while self._table[index] is not HashTable.UNUSED:
   if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽
    index = (index * 5 + 1) % _len
    if index == origin_index:
     break
    continue
   if self._table[index].key == key: # 找到了key
    return index
   else:
    index = (index * 5 + 1) % _len # 没有找到继续找下一个位置
    if index == origin_index:
     break

  return None

 # 找能插入的槽
 def _find_slot_for_insert(self, key):
  index = self._hash(key)
  _len = len(self._table)
  while not self._slot_can_insert(index): # 直到找到一个可以用的槽
   index = (index * 5 + 1) % _len
  return index

 # 槽是否能插入
 def _slot_can_insert(self, index):
  return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED

 # in operator,实现之后可以使用 in 操作符判断
 def __contains__(self, key):
  index = self._find_key(key)
  return index is not None

 # 添加元素
 def add(self, key, value):
  if key in self: # update
   index = self._find_key(key)
   self._table[index].value = value
   return False
  else:
   index = self._find_slot_for_insert(key)
   self._table[index] = Slot(key, value)
   self.length += 1
   if self._load_factor >= 0.8:
    self._rehash()
   return True

 # 槽不够时,重哈希
 def _rehash(self):
  old_table = self._table
  newsize = len(self._table) * 2
  self._table = Array(newsize, HashTable.UNUSED)

  self.length = 0

  for slot in old_table:
   if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY:
    index = self._find_slot_for_insert(slot.key)
    self._table[index] = slot
    self.length += 1

 # 获取值
 def get(self, key, default=None):
  index = self._find_key(key)
  if index is None:
   return default
  else:
   return self._table[index].value

 # 移除
 def remove(self, key):
  index = self._find_key(key)
  if index is None:
   raise KeyError()
  value = self._table[index].value
  self.length -= 1
  self._table[index] = HashTable.EMPTY
  return value

 # 遍历
 def __iter__(self):
  for slot in self._table:
   if slot not in (HashTable.EMPTY, HashTable.UNUSED):
    yield slot.key

哈希表的使用

h = HashTable()
h.add('a', 0)
h.add('b', 1)
h.add('c', 2)
print(len(h)) # 3
print(h.get('a')) # 0
print(h.get('b')) # 1
print(h.get('hehe')) # None
h.remove('a')
print(h.get('a')) # None
print(sorted(list(h))) # ['b', 'c']

字典

字典是另一种可变容器模型,且可存储任意类型对象。

字典的每个键值key=>value对用冒号:分割,每个键值对之间用逗号,分割,整个字典包括在花括号{}中 ,格式如下所示:

d = {key1 : value1, key2 : value2 }

使用python实现哈希表、字典、集合操作

基于哈希表实现字典

class Array(object):

 def __init__(self, size=32, init=None):
  self._size = size
  self._items = [init] * size

 def __getitem__(self, index):
  return self._items[index]

 def __setitem__(self, index, value):
  self._items[index] = value

 def __len__(self):
  return self._size

 def clear(self, value=None):
  for i in range(len(self._items)):
   self._items[i] = value

 def __iter__(self):
  for item in self._items:
   yield item


class Slot(object):
 """
 定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置)
 hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。

 注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。
 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了
 2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找
 3.槽正在使用 Slot 节点
 """

 def __init__(self, key, value):
  self.key, self.value = key, value


class HashTable(object):
 UNUSED = None # 没被使用过
 EMPTY = Slot(None, None) # 使用却被删除过

 def __init__(self):
  self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方
  self.length = 0

 @property
 def _load_factor(self):
  # load_factor 超过 0.8 重新分配
  return self.length / float(len(self._table))

 def __len__(self):
  return self.length

 # 进行哈希
 def _hash(self, key):
  return abs(hash(key)) % len(self._table)

 # 查找key
 def _find_key(self, key):
  """
  解释一个 slot 为 UNUSED 和 EMPTY 的区别
  因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了,
  首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。
  然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B,
  第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。
  但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。
  """
  origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素
  _len = len(self._table)
  while self._table[index] is not HashTable.UNUSED:
   if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽
    index = (index * 5 + 1) % _len
    if index == origin_index:
     break
    continue
   if self._table[index].key == key: # 找到了key
    return index
   else:
    index = (index * 5 + 1) % _len # 没有找到继续找下一个位置
    if index == origin_index:
     break

  return None

 # 找能插入的槽
 def _find_slot_for_insert(self, key):
  index = self._hash(key)
  _len = len(self._table)
  while not self._slot_can_insert(index): # 直到找到一个可以用的槽
   index = (index * 5 + 1) % _len
  return index

 # 槽是否能插入
 def _slot_can_insert(self, index):
  return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED

 # in operator,实现之后可以使用 in 操作符判断
 def __contains__(self, key):
  index = self._find_key(key)
  return index is not None

 # 添加元素
 def add(self, key, value):
  if key in self: # update
   index = self._find_key(key)
   self._table[index].value = value
   return False
  else:
   index = self._find_slot_for_insert(key)
   self._table[index] = Slot(key, value)
   self.length += 1
   if self._load_factor >= 0.8:
    self._rehash()
   return True

 # 槽不够时,重哈希
 def _rehash(self):
  old_table = self._table
  newsize = len(self._table) * 2
  self._table = Array(newsize, HashTable.UNUSED)

  self.length = 0

  for slot in old_table:
   if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY:
    index = self._find_slot_for_insert(slot.key)
    self._table[index] = slot
    self.length += 1

 # 获取值
 def get(self, key, default=None):
  index = self._find_key(key)
  if index is None:
   return default
  else:
   return self._table[index].value

 # 移除
 def remove(self, key):
  index = self._find_key(key)
  if index is None:
   raise KeyError()
  value = self._table[index].value
  self.length -= 1
  self._table[index] = HashTable.EMPTY
  return value

 # 遍历
 def __iter__(self):
  for slot in self._table:
   if slot not in (HashTable.EMPTY, HashTable.UNUSED):
    yield slot.key


class DictADT(HashTable):
 # 执行dict[key]=value时执行
 def __setitem__(self, key, value):
  self.add(key, value)

 # 执行dict[key]时执行
 def __getitem__(self, key, default=None):
  if key not in self:
   raise KeyError()
  return self.get(key, default)

 # 遍历时执行
 def _iter_slot(self):
  for slot in self._table:
   if slot not in (self.UNUSED, self.EMPTY):
    yield slot

 # 实现items方法
 def items(self):
  for slot in self._iter_slot():
   yield (slot.key, slot.value)

 # 实现keys方法
 def keys(self):
  for slot in self._iter_slot():
   yield slot.key

 # 实现values方法
 def values(self):
  for slot in self._iter_slot():
   yield slot.value

字典的使用

d = DictADT()
d['a'] = 1
print(d['a']) # 1

集合

集合是一种不包含重复元素的数据结构,经常用来判断是否重复这种操作,或者集合中是否存在一个元素。

集合可能最常用的就是去重,判断是否存在一个元素等,但是 set 相比 dict 有更丰富的操作,主要是数学概念上的。

如果你学过《离散数学》中集合相关的概念,基本上是一致的。 python 的 set 提供了如下基本的集合操作, 假设有两个集合 A,B,有以下操作

  • 交集: A & B,表示同时在 A 和 B 中的元素。 python 中重载 __and__ 实现
  • 并集: A | B,表示在 A 或者 B 中的元素,两个集合相加。python 中重载 __or__ 实现
  • 差集: A - B,表示在 A 中但是不在 B 中的元素。 python 中重载 __sub__ 实现

基于哈希表实现集合

class Array(object):

  def __init__(self, size=32, init=None):
    self._size = size
    self._items = [init] * size

  def __getitem__(self, index):
    return self._items[index]

  def __setitem__(self, index, value):
    self._items[index] = value

  def __len__(self):
    return self._size

  def clear(self, value=None):
    for i in range(len(self._items)):
      self._items[i] = value

  def __iter__(self):
    for item in self._items:
      yield item


class Slot(object):
  """
  定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置)
  hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。

  注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。
  1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了
  2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找
  3.槽正在使用 Slot 节点
  """

  def __init__(self, key, value):
    self.key, self.value = key, value


class HashTable(object):
  UNUSED = None # 没被使用过
  EMPTY = Slot(None, None) # 使用却被删除过

  def __init__(self):
    self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方
    self.length = 0

  @property
  def _load_factor(self):
    # load_factor 超过 0.8 重新分配
    return self.length / float(len(self._table))

  def __len__(self):
    return self.length

  # 进行哈希
  def _hash(self, key):
    return abs(hash(key)) % len(self._table)

  # 查找key
  def _find_key(self, key):
    """
    解释一个 slot 为 UNUSED 和 EMPTY 的区别
    因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了,
    首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。
    然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B,
    第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。
    但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。
    """
    origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素
    _len = len(self._table)
    while self._table[index] is not HashTable.UNUSED:
      if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽
        index = (index * 5 + 1) % _len
        if index == origin_index:
          break
        continue
      if self._table[index].key == key: # 找到了key
        return index
      else:
        index = (index * 5 + 1) % _len # 没有找到继续找下一个位置
        if index == origin_index:
          break

    return None

  # 找能插入的槽
  def _find_slot_for_insert(self, key):
    index = self._hash(key)
    _len = len(self._table)
    while not self._slot_can_insert(index): # 直到找到一个可以用的槽
      index = (index * 5 + 1) % _len
    return index

  # 槽是否能插入
  def _slot_can_insert(self, index):
    return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED

  # in operator,实现之后可以使用 in 操作符判断
  def __contains__(self, key):
    index = self._find_key(key)
    return index is not None

  # 添加元素
  def add(self, key, value):
    if key in self: # update
      index = self._find_key(key)
      self._table[index].value = value
      return False
    else:
      index = self._find_slot_for_insert(key)
      self._table[index] = Slot(key, value)
      self.length += 1
      if self._load_factor >= 0.8:
        self._rehash()
      return True

  # 槽不够时,重哈希
  def _rehash(self):
    old_table = self._table
    newsize = len(self._table) * 2
    self._table = Array(newsize, HashTable.UNUSED)

    self.length = 0

    for slot in old_table:
      if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY:
        index = self._find_slot_for_insert(slot.key)
        self._table[index] = slot
        self.length += 1

  # 获取值
  def get(self, key, default=None):
    index = self._find_key(key)
    if index is None:
      return default
    else:
      return self._table[index].value

  # 移除
  def remove(self, key):
    index = self._find_key(key)
    if index is None:
      raise KeyError()
    value = self._table[index].value
    self.length -= 1
    self._table[index] = HashTable.EMPTY
    return value

  # 遍历
  def __iter__(self):
    for slot in self._table:
      if slot not in (HashTable.EMPTY, HashTable.UNUSED):
        yield slot.key


class SetADT(HashTable):
  # 添加元素
  def add(self, key):
    super().add(key, True)
  
  def __and__(self, other_set):
    """交集 A&B"""
    new_set = SetADT()
    for element_a in self:
      if element_a in other_set:
        new_set.add(element_a)
    return new_set

  def __sub__(self, other_set):
    """差集 A-B"""
    new_set = SetADT()
    for element_a in self:
      if element_a not in other_set:
        new_set.add(element_a)
    return new_set

  def __or__(self, other_set):
    """并集 A|B"""
    new_set = SetADT()
    for element_a in self:
      new_set.add(element_a)
    for element_b in other_set:
      new_set.add(element_b)
    return new_set

集合的使用

sa = SetADT()
sa.add(1)
sa.add(2)
sa.add(3)

sb = SetADT()
sb.add(3)
sb.add(4)
sb.add(5)

print(sorted(list(sa & sb))) # [3]
print(sorted(list(sa - sb))) # [1, 2]
print(sorted(list(sa | sb))) # [1, 2, 3, 4, 5]

总结

以上所述是小编给大家介绍的使用python实现哈希表、字典、集合操作,希望对大家有所帮助!

Python 相关文章推荐
Python使用SocketServer模块编写基本服务器程序的教程
Jul 12 Python
python 循环while和for in简单实例
Aug 16 Python
Python与R语言的简要对比
Nov 14 Python
python实现聚类算法原理
Feb 12 Python
python解决js文件utf-8编码乱码问题(推荐)
May 02 Python
django反向解析和正向解析的方式
Jun 05 Python
pygame实现雷电游戏雏形开发
Nov 20 Python
python利用thrift服务读取hbase数据的方法
Dec 27 Python
python 使用事件对象asyncio.Event来同步协程的操作
May 04 Python
python numpy实现rolling滚动案例
Jun 08 Python
python 提高开发效率的5个小技巧
Oct 19 Python
Cpython解释器中的GIL全局解释器锁
Nov 09 Python
浅析Python数字类型和字符串类型的内置方法
Dec 22 #Python
Python利用多线程同步锁实现多窗口订票系统(推荐)
Dec 22 #Python
python使用正则来处理各种匹配问题
Dec 22 #Python
Python中base64与xml取值结合问题
Dec 22 #Python
python操作cfg配置文件方式
Dec 22 #Python
python实现局域网内实时通信代码
Dec 22 #Python
python 解决flask uwsgi 获取不到全局变量的问题
Dec 22 #Python
You might like
PHP获取mysql数据表的字段名称和详细信息的方法
2014/09/27 PHP
使用PHP如何实现高效安全的ftp服务器(一)
2015/12/20 PHP
php 数据结构之链表队列
2017/10/17 PHP
php探针不显示内存解决方法
2019/09/17 PHP
解决laravel session失效的问题
2019/10/14 PHP
javascript二维数组转置实例
2015/01/22 Javascript
js实现拖拽效果(构造函数)
2015/12/14 Javascript
jQuery form插件的使用之处理server返回的JSON, XML,HTML数据
2016/01/26 Javascript
Node.js刷新session过期时间的实现方法推荐
2016/05/18 Javascript
使用jQuery的load方法设计动态加载及解决被加载页面js失效问题
2017/03/01 Javascript
Angularjs+bootstrap+table多选(全选)支持单击行选中实现编辑、删除功能
2017/03/27 Javascript
JS实现的加减乘除四则运算计算器示例
2017/08/09 Javascript
Node.js使用Koa搭建 基础项目
2018/01/08 Javascript
Angular5升级RxJS到5.5.3报错:EmptyError: no elements in sequence的解决方法
2018/04/09 Javascript
boostrap模态框二次弹出清空原有内容的方法
2018/08/10 Javascript
小程序实现列表删除功能
2018/10/30 Javascript
微信jssdk逻辑在vue中的运用详解
2018/11/14 Javascript
ES6顶层对象、global对象实例分析
2019/06/14 Javascript
[52:05]EG vs OG 2019国际邀请赛小组赛 BO2 第二场 8.16
2019/08/18 DOTA
在Python的web框架中编写创建日志的程序的教程
2015/04/30 Python
详解python中字典的循环遍历的两种方式
2017/02/07 Python
解决PyCharm中光标变粗的问题
2017/08/05 Python
Python使用wxPython实现计算器
2018/01/30 Python
windows下pycharm安装、创建文件、配置默认模板
2018/07/31 Python
Selenium鼠标与键盘事件常用操作方法示例
2018/08/13 Python
PyCharm下载和安装详细步骤
2019/12/17 Python
Python 文件数据读写的具体实现
2020/01/24 Python
Python实现桌面翻译工具【新手必学】
2020/02/12 Python
Selenium 安装和简单使用的实现
2020/12/04 Python
巴黎卡诗美国官方网站:始于1964年的头发头皮护理专家
2017/07/10 全球购物
HEMA英国:荷兰原创设计
2018/08/28 全球购物
Hoover胡佛官网:美国吸尘器和洗地机品牌
2019/01/09 全球购物
最常使用的求职信
2014/05/25 职场文书
学校百日安全活动总结
2015/05/07 职场文书
2019年描写人生经典诗句大全
2019/07/08 职场文书
写作技巧:如何撰写商业计划书
2019/08/08 职场文书