基于python进行抽样分布描述及实践详解


Posted in Python onSeptember 02, 2019

本次选取泰坦尼克号的数据,利用python进行抽样分布描述及实践。

备注:数据集的原始数据是泰坦尼克号的数据,本次截取了其中的一部分数据进行学习。Age:年龄,指登船者的年龄。Fare:价格,指船票价格。Embark:登船的港口。

1、按照港口分类,使用python求出各类港口数据 年龄、车票价格的统计量(均值、方差、标准差、变异系数等)。

import pandas as pd
df = pd.read_excel('/Users/Downloads/data.xlsx',usecols = [1,2,3] )
#拿到港口'Embarked'、年龄'Age'、价格'Fare'的数据
df2 = df.groupby(['Embarked'])
#按照港口'Embarked'分类后,查看 年龄、车票价格的统计量。
# 变异系数 = 标准差/平均值
def cv(data):
  return data.std()/data.var()

df2 = df.groupby(['Embarked']).agg(['count','min','max','median','mean','var','std',cv])
df2 = df2.apply(lambda x:round(x,2))
df2_age = df2['Age']
df2_fare = df2['Fare']

分类后 年龄及价格统计量描述数据如下图:

年龄统计量

基于python进行抽样分布描述及实践详解

价格统计量

基于python进行抽样分布描述及实践详解

2、画出价格的分布图像,验证数据服从何种分布(正态?卡方?还是T?)

2.1 画出船票的直方图:

plt.hist(df['Fare'],20,normed=1, alpha=0.75)
plt.title('Fare')
plt.grid(True)

船票价格的直方图及概率分布

基于python进行抽样分布描述及实践详解

2.2 验证是否符合正态分布?

#分别用kstest、shapiro、normaltest来验证分布系数
ks_test = kstest(df['Fare'], 'norm')
#KstestResult(statistic=0.99013849978633, pvalue=0.0)

shapiro_test = shapiro(df['Fare'])
#shapiroResult(0.5256513357162476, 7.001769945799311e-40)

normaltest_test = normaltest(df['Fare'],axis=0) 
#NormaltestResult(statistic=715.0752414548335, pvalue=5.289130045259168e-156)

以上三种检测结果表明 p<5%,因此 船票数据不符合正态分布。

绘制拟合正态分布曲线:

fare = df['Fare']

plt.figure()
fare.plot(kind = 'kde')   #原始数据的正态分布

M_S = stats.norm.fit(fare)  #正态分布拟合的平均值loc,标准差 scale
normalDistribution = stats.norm(M_S[0], M_S[1])  # 绘制拟合的正态分布图
x = np.linspace(normalDistribution.ppf(0.01), normalDistribution.ppf(0.99), 100)
plt.plot(x, normalDistribution.pdf(x), c='orange')
plt.xlabel('Fare about Titanic')
plt.title('Titanic[Fare] on NormalDistribution', size=20)
plt.legend(['Origin', 'NormDistribution'])

船票拟合正态分布曲线

基于python进行抽样分布描述及实践详解

2.3 验证是否符合T分布?

T_S = stats.t.fit(fare)
df = T_S[0] 
loc = T_S[1] 
scale = T_S[2] 
x2 = stats.t.rvs(df=df, loc=loc, scale=scale, size=len(fare))
D, p = stats.ks_2samp(fare, x2) # (0.25842696629213485 2.6844476044528504e-21)

p = 2.6844476044528504e-21 ,p < alpha,拒绝原假设,价格数据不符合t分布。

对票价数据进行T分布拟合:

plt.figure()
fare.plot(kind = 'kde') 
TDistribution = stats.t(T_S[0], T_S[1],T_S[2])  # 绘制拟合的T分布图
x = np.linspace(TDistribution.ppf(0.01), TDistribution.ppf(0.99), 100)
plt.plot(x, TDistribution.pdf(x), c='orange')
plt.xlabel('Fare about Titanic')
plt.title('Titanic[Fare] on TDistribution', size=20)
plt.legend(['Origin', 'TDistribution'])

票价拟合T分布

基于python进行抽样分布描述及实践详解

2.4 验证是否符合卡方分布?

chi_S = stats.chi2.fit(fare)
df_chi = chi_S[0] 
loc_chi = chi_S[1] 
scale_chi = chi_S[2] 
x2 = stats.chi2.rvs(df=df_chi, loc=loc_chi, scale=scale_chi, size=len(fare))
Df, pf = stats.ks_2samp(fare, x2) # (0.16292134831460675, 1.154755913291936e-08)

p = 1.154755913291936e-08 ,p < alpha,拒绝原假设,价格数据不符合卡方分布。

对票价数据进行卡方分布拟合

plt.figure()
fare.plot(kind = 'kde') 
chiDistribution = stats.chi2(chi_S[0], chi_S[1],chi_S[2])  # 绘制拟合的正态分布图
x = np.linspace(chiDistribution.ppf(0.01), chiDistribution.ppf(0.99), 100)
plt.plot(x, chiDistribution.pdf(x), c='orange')
plt.xlabel('Fare about Titanic')
plt.title('Titanic[Fare] on chi-square_Distribution', size=20)
plt.legend(['Origin', 'chi-square_Distribution'])

票价拟合卡方分布

基于python进行抽样分布描述及实践详解

3、按照港口分类,验证S与Q两个港口间的价格之差是否服从某种分布

S_fare = df[df['Embarked'] =='S']['Fare']
Q_fare = df[df['Embarked'] =='Q']['Fare']
C_fare = df[df['Embarked'] =='C']['Fare']
S_fare.describe()
count  554.000000
mean   27.476284
std    36.546362
min    0.000000
25%    8.050000
50%    13.000000
75%    27.862500
max   263.000000
Q_fare.describe()
count  28.000000
mean   18.265775
std   21.843582
min    6.750000
25%    7.750000
50%    7.750000
75%   18.906250
max   90.000000
C_fare.describe()
count  130.000000
mean   68.296767
std    90.557822
min    4.012500
25%    14.454200
50%    36.252100
75%    81.428100
max   512.329200

按照港口分类后,S港口样本数<=554,Q港口样本数<=28,C港口样本数<=130。

总体不服从正态分布,所以需要当n比较大时,一般要求n>=30,两个样本均值之差的抽样分布可近似为正态分布。X2的总体容量为28,其样本容量不可能超过30,故其S港和Q港两个样本均值之差(E(X1)-E(X2))的抽样分布不服从正态分布。

S港和C港两个样本均值之差(E(X1)-E(X3))的抽样分布近似服从正态分布,其均值和方差分别为E(E(X1) - E(X3)) = E(E(X1)) - E(E(X3)) = μ1 - μ3;D(E(X1) + E(X3)) = D(E(X1)) + D(E(X3)) = σ1²/n1 + σ3²/n3 。绘图如下:

miu = np.mean(S_fare) - np.mean(C_fare)
sig = np.sqrt(np.var(S_fare, ddof=1)/len(S_fare) + np.var(C_fare, ddof=1)/len(C_fare))

x = np.arange(- 110, 50)
y = stats.norm.pdf(x, miu, sig)
plt.plot(x, y)
plt.xlabel("S_Fare - C_Fare")
plt.ylabel("Density")
plt.title('Fare difference between S and C')
plt.show()

基于python进行抽样分布描述及实践详解

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python访问mysql数据库的实现方法(2则示例)
Jan 06 Python
git使用.gitignore设置不生效或不起作用问题的解决方法
Jun 01 Python
Python之re操作方法(详解)
Jun 14 Python
python 输出上个月的月末日期实例
Apr 11 Python
Python中正则表达式的用法总结
Feb 22 Python
Django实现学员管理系统
Feb 26 Python
Pytorch实现各种2d卷积示例
Dec 30 Python
python实现飞机大战游戏(pygame版)
Oct 26 Python
如何搭建pytorch环境的方法步骤
May 06 Python
python 解决Fatal error in launcher:错误问题
May 21 Python
浅谈keras中Dropout在预测过程中是否仍要起作用
Jul 09 Python
Python创建临时文件和文件夹
Aug 05 Python
利用Python复制文件的9种方法总结
Sep 02 #Python
Python单元测试工具doctest和unittest使用解析
Sep 02 #Python
Python操作SQLite数据库过程解析
Sep 02 #Python
Python实现生成密码字典的方法示例
Sep 02 #Python
python使用多线程编写tcp客户端程序
Sep 02 #Python
使用python实现离散时间傅里叶变换的方法
Sep 02 #Python
详解Python图像处理库Pillow常用使用方法
Sep 02 #Python
You might like
实现php加速的eAccelerator dll支持文件打包下载
2007/09/30 PHP
yii框架builder、update、delete使用方法
2014/04/30 PHP
学习PHP Cookie处理函数
2016/08/09 PHP
在php的yii2框架中整合hbase库的方法
2018/09/20 PHP
PHP For循环字母A-Z当超过26个字母时输出AA,AB,AC
2020/02/16 PHP
jquery键盘事件介绍
2011/01/31 Javascript
Jquery上传插件 uploadify v3.1使用说明
2012/06/18 Javascript
javaScript复制功能调用实现方案
2012/12/13 Javascript
showModalDialog模态对话框的使用详解以及浏览器兼容
2014/01/11 Javascript
jQuery之选项卡的简单实现
2014/02/28 Javascript
jQuery的选择器中的通配符[id^='code']或[name^='code']及jquery选择器总结
2015/12/24 Javascript
JavaScript动态数量的文件上传控件
2016/11/18 Javascript
解决vue+webpack打包路径的问题
2018/03/06 Javascript
JS执行控制之节流模式实例分析
2018/12/21 Javascript
react使用CSS实现react动画功能示例
2020/05/18 Javascript
python解析xml文件操作实例
2014/10/05 Python
python 如何快速找出两个电子表中数据的差异
2017/05/26 Python
对python中for、if、while的区别与比较方法
2018/06/25 Python
TensorFlow实现模型评估
2018/09/07 Python
用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)
2019/01/08 Python
Python循环实现n的全排列功能
2019/09/16 Python
Python实现不规则图形填充的思路
2020/02/02 Python
django有外键关系的两张表如何相互查找
2020/02/10 Python
python通过cython加密代码
2020/12/11 Python
基于html5 canvas做批改作业的小插件
2020/05/20 HTML / CSS
澳大利亚先进的皮肤和激光诊所购物网站:Soho Skincare
2018/10/15 全球购物
世界上最伟大的马产品:Equiderma
2020/01/07 全球购物
交通专业个人自荐信格式
2013/09/23 职场文书
《识字五》教学反思
2014/03/01 职场文书
端午节活动策划方案
2014/03/09 职场文书
经典公益广告词
2014/03/13 职场文书
党的群众路线教育实践活动公开承诺书
2014/03/28 职场文书
生产助理岗位职责
2014/06/18 职场文书
学雷锋献爱心倡议书
2015/04/27 职场文书
2015年城乡环境综合治理工作总结
2015/07/24 职场文书
如何制定一份可行的计划!
2019/06/21 职场文书