Python实现的最近最少使用算法


Posted in Python onJuly 10, 2015

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class 
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> 
# Licensed under the Academic Free License 2.1 
# Licensed for ftputil under the revised BSD license 
# with permission by the author, Evan Prodromou. Many 
# thanks, Evan! :-) 
# 
# The original file is available at 
# http://pypi.python.org/pypi/lrucache/0.2 . 
# arch-tag: LRU cache main module 
"""a simple LRU (Least-Recently-Used) cache module 
This module provides very simple LRU (Least-Recently-Used) cache 
functionality. 
An *in-memory cache* is useful for storing the results of an 
'expe\nsive' process (one that takes a lot of time or resources) for 
later re-use. Typical examples are accessing data from the filesystem, 
a database, or a network location. If you know you'll need to re-read 
the data again, it can help to keep it in a cache. 
You *can* use a Python dictionary as a cache for some purposes. 
However, if the results you're caching are large, or you have a lot of 
possible results, this can be impractical memory-wise. 
An *LRU cache*, on the other hand, only keeps _some_ of the results in 
memory, which keeps you from overusing resources. The cache is bounded 
by a maximum size; if you try to add more values to the cache, it will 
automatically discard the values that you haven't read or written to 
in the longest time. In other words, the least-recently-used items are 
discarded. [1]_ 
.. [1]: 'Discarded' here means 'removed from the cache'. 
"""
from __future__ import generators 
import time 
from heapq import heappush, heappop, heapify 
# the suffix after the hyphen denotes modifications by the 
# ftputil project with respect to the original version 
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] 
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError): 
  """Error raised when cache requests fail 
  When a cache record is accessed which no longer exists (or never did), 
  this error is raised. To avoid it, you may want to check for the existence 
  of a cache record before reading or deleting it."""
  pass
class LRUCache(object): 
  """Least-Recently-Used (LRU) cache. 
  Instances of this class provide a least-recently-used (LRU) cache. They 
  emulate a Python mapping type. You can use an LRU cache more or less like 
  a Python dictionary, with the exception that objects you put into the 
  cache may be discarded before you take them out. 
  Some example usage:: 
  cache = LRUCache(32) # new cache 
  cache['foo'] = get_file_contents('foo') # or whatever 
  if 'foo' in cache: # if it's still in cache... 
    # use cached version 
    contents = cache['foo'] 
  else: 
    # recalculate 
    contents = get_file_contents('foo') 
    # store in cache for next time 
    cache['foo'] = contents 
  print cache.size # Maximum size 
  print len(cache) # 0 <= len(cache) <= cache.size 
  cache.size = 10 # Auto-shrink on size assignment 
  for i in range(50): # note: larger than cache size 
    cache[i] = i 
  if 0 not in cache: print 'Zero was discarded.' 
  if 42 in cache: 
    del cache[42] # Manual deletion 
  for j in cache:  # iterate (in LRU order) 
    print j, cache[j] # iterator produces keys, not values 
  """
  class __Node(object): 
    """Record of a cached value. Not for public consumption."""
    def __init__(self, key, obj, timestamp, sort_key): 
      object.__init__(self) 
      self.key = key 
      self.obj = obj 
      self.atime = timestamp 
      self.mtime = self.atime 
      self._sort_key = sort_key 
    def __cmp__(self, other): 
      return cmp(self._sort_key, other._sort_key) 
    def __repr__(self): 
      return "<%s %s => %s (%s)>" % \ 
          (self.__class__, self.key, self.obj, \ 
          time.asctime(time.localtime(self.atime))) 
  def __init__(self, size=DEFAULT_SIZE): 
    # Check arguments 
    if size <= 0: 
      raise ValueError, size 
    elif type(size) is not type(0): 
      raise TypeError, size 
    object.__init__(self) 
    self.__heap = [] 
    self.__dict = {} 
    """Maximum size of the cache. 
    If more than 'size' elements are added to the cache, 
    the least-recently-used ones will be discarded."""
    self.size = size 
    self.__counter = 0
  def _sort_key(self): 
    """Return a new integer value upon every call. 
    Cache nodes need a monotonically increasing time indicator. 
    time.time() and time.clock() don't guarantee this in a 
    platform-independent way. 
    """
    self.__counter += 1
    return self.__counter 
  def __len__(self): 
    return len(self.__heap) 
  def __contains__(self, key): 
    return self.__dict.has_key(key) 
  def __setitem__(self, key, obj): 
    if self.__dict.has_key(key): 
      node = self.__dict[key] 
      # update node object in-place 
      node.obj = obj 
      node.atime = time.time() 
      node.mtime = node.atime 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
    else: 
      # size may have been reset, so we loop 
      while len(self.__heap) >= self.size: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
      node = self.__Node(key, obj, time.time(), self._sort_key()) 
      self.__dict[key] = node 
      heappush(self.__heap, node) 
  def __getitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      # update node object in-place 
      node.atime = time.time() 
      node._sort_key = self._sort_key() 
      heapify(self.__heap) 
      return node.obj 
  def __delitem__(self, key): 
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      del self.__dict[key] 
      self.__heap.remove(node) 
      heapify(self.__heap) 
      return node.obj 
  def __iter__(self): 
    copy = self.__heap[:] 
    while len(copy) > 0: 
      node = heappop(copy) 
      yield node.key 
    raise StopIteration 
  def __setattr__(self, name, value): 
    object.__setattr__(self, name, value) 
    # automagically shrink heap on resize 
    if name == 'size': 
      while len(self.__heap) > value: 
        lru = heappop(self.__heap) 
        del self.__dict[lru.key] 
  def __repr__(self): 
    return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) 
  def mtime(self, key): 
    """Return the last modification time for the cache record with key. 
    May be useful for cache instances where the stored values can get 
    'stale', such as caching file or network resource contents."""
    if not self.__dict.has_key(key): 
      raise CacheKeyError(key) 
    else: 
      node = self.__dict[key] 
      return node.mtime 
if __name__ == "__main__": 
  cache = LRUCache(25) 
  print cache 
  for i in range(50): 
    cache[i] = str(i) 
  print cache 
  if 46 in cache: 
    print "46 in cache"
    del cache[46] 
  print cache 
  cache.size = 10
  print cache 
  cache[46] = '46'
  print cache 
  print len(cache) 
  for c in cache: 
    print c 
  print cache 
  print cache.mtime(46) 
  for c in cache: 
    print c

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
Python struct.unpack
Sep 06 Python
python操作ssh实现服务器日志下载的方法
Jun 03 Python
Django Highcharts制作图表
Aug 27 Python
python中利用await关键字如何等待Future对象完成详解
Sep 07 Python
pandas DataFrame数据转为list的方法
Apr 11 Python
python 读取鼠标点击坐标的实例
Dec 29 Python
python numpy实现文件存取的示例代码
May 26 Python
python如何制作英文字典
Jun 25 Python
OpenCV 表盘指针自动读数的示例代码
Apr 10 Python
解决pymysql cursor.fetchall() 获取不到数据的问题
May 15 Python
python3读取autocad图形文件.py实例
Jun 05 Python
关于的python五子棋的算法
May 02 Python
Python导入oracle数据的方法
Jul 10 #Python
Python验证码识别的方法
Jul 10 #Python
Python实现大文件排序的方法
Jul 10 #Python
Python实现telnet服务器的方法
Jul 10 #Python
Python读写unicode文件的方法
Jul 10 #Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 #Python
python和bash统计CPU利用率的方法
Jul 10 #Python
You might like
php实现smarty模板无限极分类的方法
2015/12/07 PHP
yii2中关于加密解密的那些事儿
2018/06/12 PHP
Laravel 不同生产环境服务器的判断实践
2019/10/15 PHP
PHP中关于php.ini参数优化详解
2020/02/28 PHP
javascript中的对象和数组的应用技巧
2007/01/07 Javascript
js电信网通双线自动选择技巧
2008/11/18 Javascript
Textbox控件注册回车事件及触发按钮提交事件具体实现
2013/03/04 Javascript
jQuery实现点击小图显示大图代码分享
2015/08/25 Javascript
使用Node.js处理前端代码文件的编码问题
2016/02/16 Javascript
浅谈jQuery中的checkbox问题
2016/08/10 Javascript
JS简单实现仿百度控制台输出信息效果
2016/09/04 Javascript
Angular 4.X开发实践中的踩坑小结
2017/07/04 Javascript
Angularjs实现多图片上传预览功能
2018/07/18 Javascript
JavaScript实现点击出现图片并统计点击次数功能示例
2018/07/23 Javascript
Javascript实现一朵从含苞到绽放的玫瑰
2019/03/30 Javascript
图解javascript作用域链
2019/05/27 Javascript
如何构建 vue-ssr 项目的方法步骤
2020/08/04 Javascript
vue绑定数字类型 value为数字的实例
2020/08/31 Javascript
Vue项目打包编译优化方案
2020/09/16 Javascript
HTML元素拖拽功能实现的完整实例
2020/12/04 Javascript
使用Python的Scrapy框架十分钟爬取美女图
2016/12/26 Python
Python pyinotify日志监控系统处理日志的方法
2018/03/08 Python
Python subprocess模块常见用法分析
2018/06/12 Python
python实现机器学习之元线性回归
2018/09/06 Python
MVMT手表官方网站:时尚又实惠的高品质手表
2016/12/04 全球购物
UNDONE手表官网:世界领先的定制手表品牌
2018/11/13 全球购物
意大利文具和办公产品在线商店:Y-Office
2020/02/27 全球购物
护理自荐信
2013/10/22 职场文书
个人廉洁自律承诺书
2014/03/27 职场文书
酒后驾车标语
2014/06/30 职场文书
小学生安全责任书
2014/07/25 职场文书
公司的力量观后感
2015/06/05 职场文书
婚宴父母致辞
2015/07/27 职场文书
公务员爱岗敬业心得体会
2016/01/25 职场文书
导游词之南京夫子庙
2019/12/09 职场文书
Java无向树分析 实现最小高度树
2022/04/09 Javascript