python设置 matplotlib 正确显示中文的四种方式


Posted in Python onMay 10, 2021

一、前言

啪地一下点进来,很快呀~~

python设置 matplotlib 正确显示中文的四种方式

matplotlib是 Python 优秀的数据可视化第三方库,matplotlib是基于 numpy 的一套 Python 工具包。这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。

python设置 matplotlib 正确显示中文的四种方式

Matplotlib库由各种可视化类构成,内部结构复杂,受 Matlab 启发 matplotlib.pyplot 是绘制各类可视化图形的命令子库,相当于快捷方式。

import matplotlib.pyplot as plt

可 matplotlib 并不支持中文显示。有中文显示会出现如下问题:

# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

可 matplotlib 并不支持中文显示。有中文显示会出现如下问题:

# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

python设置 matplotlib 正确显示中文的四种方式

需要我们手动一下下设置~~,才能解决中文显示的问题。

二、解决方法

1. 方式一

from matplotlib.font_manager import FontProperties  # 导入FontProperties

font = FontProperties(fname="SimHei.ttf", size=14)  # 设置字体

# 哪里需要显示中文就在哪里设置
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties  # 步骤一
# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')
font = FontProperties(fname="SimHei.ttf", size=14)  # 步骤二
# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13, fontproperties=font)
plt.ylabel("直接信任度值", fontsize=13, fontproperties=font)
# 显示图例
plt.legend(prop=font)

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

2. 方式二

通过 fontdict 字典参数来设置

fontdict={"family": "KaiTi", "size": 15, "color": "r"}
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13, fontdict={"family": "KaiTi", "size": 15, "color": "r"})
plt.ylabel("直接信任度值", fontsize=13, fontdict={"family": "KaiTi", "size": 15, "color": "k"})

# 显示图例
plt.legend(prop={'family': 'SimHei', 'size': 16})

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

3. 方式三

改变全局的字体

# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt
import matplotlib as mpl

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)
# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)

# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

4. 方式四

同样也是全局改变字体的方法

font = {'family' : 'SimHei',
        'weight' : 'bold',
        'size'   : '16'}
plt.rc('font', **font)               # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=False)  # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: UTF-8 -*-
"""
@Author  :叶庭云
@公众号  :修炼Python
@CSDN    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

font = {'family' : 'SimHei',
        'weight' : 'bold',
        'size'   : '16'}
plt.rc('font', **font)               # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=False)  # 步骤二(解决坐标轴负数的负号显示问题)

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)

# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

三、总结

  • 方式一、方式二是哪里需要中文显示才设置,且不会污染全局字体设置,更灵活。
  • 方式三、方式四不改变全局的字体设置,一次设置,多次使用,更方便。

附常用字体如下:

  • 宋体:SimSun
  • 黑体:SimHei
  • 微软雅黑:Microsoft YaHei
  • 微软正黑体:Microsoft JhengHei
  • 新宋体:NSimSun
  • 新细明体:PMingLiU
  • 细明体:MingLiU
  • 标楷体:DFKai-SB
  • 仿宋:FangSong
  • 楷体:KaiTi
  • 隶书:LiSu
  • 幼圆:YouYuan
  • 华文细黑:STXihei
  • 华文楷体:STKaiti
  • 华文宋体:STSong
  • 华文中宋:STZhongsong
  • 华文仿宋:STFangsong
  • 方正舒体:FZShuTi
  • 方正姚体:FZYaoti
  • 华文彩云:STCaiyun
  • 华文琥珀:STHupo
  • 华文隶书:STLiti
  • 华文行楷:STXingkai
  • 华文新魏:STXinwei

以上就是python设置 matplotlib 正确显示中文的四种方式的详细内容,更多关于python matplotlib 正确显示中文的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
压缩包密码破解示例分享(类似典破解)
Jan 17 Python
在Django同1个页面中的多表单处理详解
Jan 25 Python
Python中实现变量赋值传递时的引用和拷贝方法
Apr 29 Python
Django使用详解:ORM 的反向查找(related_name)
May 30 Python
python中使用zip函数出现错误的原因
Sep 28 Python
使用Python实现在Windows下安装Django
Oct 17 Python
python中break、continue 、exit() 、pass终止循环的区别详解
Jul 08 Python
python编写计算器功能
Oct 25 Python
基于python实现matlab filter函数过程详解
Jun 08 Python
python 删除系统中的文件(按时间,大小,扩展名)
Nov 19 Python
python 下划线的多种应用场景总结
May 12 Python
python中if和elif的区别介绍
Nov 07 Python
提取视频中的音频 Python只需要三行代码!
Python-typing: 类型标注与支持 Any类型详解
May 10 #Python
超详细Python解释器新手安装教程
Python机器学习三大件之一numpy
python实现自动清理文件夹旧文件
May 10 #Python
Python中的min及返回最小值索引的操作
May 10 #Python
发工资啦!教你用Python实现邮箱自动群发工资条
You might like
php仿ZOL分页类代码
2008/10/02 PHP
使用PHPMYADMIN操作mysql数据库添加新用户和数据库的方法
2010/04/02 PHP
php数据库的增删改查 php与javascript之间的交互
2017/08/31 PHP
PHP实现简单用户登录界面
2019/10/23 PHP
jquery trim() 功能源代码
2011/02/14 Javascript
javascript中的继承实例代码
2011/04/27 Javascript
JS判定是否原生方法
2013/07/22 Javascript
判断ie的两种简单方法
2013/08/12 Javascript
js控制页面控件隐藏显示的两种方法介绍
2013/10/09 Javascript
Document.location.href和.replace的区别示例介绍
2014/03/04 Javascript
Jquery $when done then的用法详解
2016/05/20 Javascript
原生js封装的一些jquery方法(详解)
2016/09/20 Javascript
在JS循环中使用async/await的方法
2018/10/12 Javascript
nodejs同步调用获取mysql数据时遇到的大坑
2019/03/02 NodeJs
微信小程序用户授权,以及判断登录是否过期的方法
2019/05/10 Javascript
javascript写一个ajax自动拦截并下载数据代码实例
2019/09/07 Javascript
layer.open 子页面弹出层向父页面传输数据的例子
2019/09/26 Javascript
[03:14]DOTA2斧王 英雄基础教程
2013/11/26 DOTA
Python urllib模块urlopen()与urlretrieve()详解
2013/11/01 Python
Python采用Django开发自己的博客系统
2020/09/29 Python
正确理解python中的关键字“with”与上下文管理器
2017/04/21 Python
Linux下python3.6.1环境配置教程
2018/09/26 Python
Python3 jupyter notebook 服务器搭建过程
2018/11/30 Python
python进程和线程用法知识点总结
2019/05/28 Python
幼儿园教师节活动方案
2014/02/02 职场文书
保密工作实施方案
2014/02/24 职场文书
《七颗钻石》教学反思
2014/02/28 职场文书
士力架广告词
2014/03/20 职场文书
法制宣传教育方案
2014/05/09 职场文书
群众路线教育实践活动个人对照检查材料思想汇报(社区班子)
2014/10/06 职场文书
2014年财务工作总结范文
2014/11/11 职场文书
党员转正意见怎么写
2015/06/03 职场文书
立案决定书范文
2015/06/24 职场文书
公司员工离职感言
2015/08/03 职场文书
小学感恩主题班会
2015/08/12 职场文书
python数据可视化JupyterLab实用扩展程序Mito
2021/11/20 Python