Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式


Posted in Python onJanuary 10, 2020

CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息。

这里用传统的卷积方式实现CGAN。

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
import pickle
import copy
 
import matplotlib.gridspec as gridspec
import os
 
def save_model(model, filename): #保存为CPU中可以打开的模型
 state = model.state_dict()
 x=state.copy()
 for key in x: 
  x[key] = x[key].clone().cpu()
 torch.save(x, filename)
 
def showimg(images,count):
 images=images.to('cpu')
 images=images.detach().numpy()
 images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = images.shape[2]
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 for i, img in enumerate(images):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width,width),cmap = plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
#  plt.tight_layout()
 plt.savefig(r'./CGAN/images/%d.png'% count, bbox_inches='tight')
 
def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader
 
class discriminator(nn.Module):
 def __init__(self):
  super(discriminator,self).__init__()
  self.dis=nn.Sequential(
   nn.Conv2d(1,32,5,stride=1,padding=2),
   nn.LeakyReLU(0.2,True),
   nn.MaxPool2d((2,2)),
 
   nn.Conv2d(32,64,5,stride=1,padding=2),
   nn.LeakyReLU(0.2,True),
   nn.MaxPool2d((2,2))
  )
  self.fc=nn.Sequential(
   nn.Linear(7 * 7 * 64, 1024),
   nn.LeakyReLU(0.2, True),
   nn.Linear(1024, 10),
   nn.Sigmoid()
  )
 def forward(self, x):
  x=self.dis(x)
  x=x.view(x.size(0),-1)
  x=self.fc(x)
  return x
 
class generator(nn.Module):
 def __init__(self,input_size,num_feature):
  super(generator,self).__init__()
  self.fc=nn.Linear(input_size,num_feature) #1*56*56
  self.br=nn.Sequential(
   nn.BatchNorm2d(1),
   nn.ReLU(True)
  )
  self.gen=nn.Sequential(
   nn.Conv2d(1,50,3,stride=1,padding=1),
   nn.BatchNorm2d(50),
   nn.ReLU(True),
 
   nn.Conv2d(50,25,3,stride=1,padding=1),
   nn.BatchNorm2d(25),
   nn.ReLU(True),
 
   nn.Conv2d(25,1,2,stride=2),
   nn.Tanh()
  )
 def forward(self, x):
  x=self.fc(x)
  x=x.view(x.size(0),1,56,56)
  x=self.br(x)
  x=self.gen(x)
  return x
 
if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=110
 D=discriminator()
 G=generator(z_dimension,3136) #1*56*56
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 D=D.cuda()
 G=G.cuda()
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数,
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 119
 gepoch = 1
 for i in range(epoch):
  for (img, label) in trainloader:
   labels_onehot = np.zeros((num_img,10))
   labels_onehot[np.arange(num_img),label.numpy()]=1
#    img=img.view(num_img,-1)
#    img=np.concatenate((img.numpy(),labels_onehot))
#    img=torch.from_numpy(img)
   img=Variable(img).cuda()
   real_label=Variable(torch.from_numpy(labels_onehot).float()).cuda()#真实label为1
   fake_label=Variable(torch.zeros(num_img,10)).cuda()#假的label为0
 
   #compute loss of real_img
   real_out=D(img) #真实图片送入判别器D输出0~1
   d_loss_real=criterion(real_out,real_label)#得到loss
   real_scores=real_out#真实图片放入判别器输出越接近1越好
 
   #compute loss of fake_img
   z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量
   fake_img=G(z)#将向量放入生成网络G生成一张图片
   fake_out=D(fake_img)#判别器判断假的图片
   d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
   fake_scores=fake_out#假的图片放入判别器输出越接近0越好
 
   #D bp and optimize
   d_loss=d_loss_real+d_loss_fake
   d_optimizer.zero_grad() #判别器D的梯度归零
   d_loss.backward() #反向传播
   d_optimizer.step() #更新判别器D参数
 
   #生成器G的训练compute loss of fake_img
   for j in range(gepoch):
    z =torch.randn(num_img, 100) # 随机生成向量
    z=np.concatenate((z.numpy(),labels_onehot),axis=1)
    z=Variable(torch.from_numpy(z).float()).cuda()
    fake_img = G(z) # 将向量放入生成网络G生成一张图片
    output = D(fake_img) # 经过判别器得到结果
    g_loss = criterion(output, real_label)#得到假的图片与真实标签的loss
    #bp and optimize
    g_optimizer.zero_grad() #生成器G的梯度归零
    g_loss.backward() #反向传播
    g_optimizer.step()#更新生成器G参数
    temp=real_label
  if (i%10==0) and (i!=0):
   print(i)
   torch.save(G.state_dict(),r'./CGAN/Generator_cuda_%d.pkl'%i)
   torch.save(D.state_dict(), r'./CGAN/Discriminator_cuda_%d.pkl' % i)
   save_model(G, r'./CGAN/Generator_cpu_%d.pkl'%i) #保存为CPU中可以打开的模型
   save_model(D, r'./CGAN/Discriminator_cpu_%d.pkl'%i) #保存为CPU中可以打开的模型
  print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
     'D real: {:.6f}, D fake: {:.6f}'.format(
    i, epoch, d_loss.data[0], g_loss.data[0],
    real_scores.data.mean(), fake_scores.data.mean()))
  temp=temp.to('cpu')
  _,x=torch.max(temp,1)
  x=x.numpy()
  print(x[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]])
  showimg(fake_img,count)
  plt.show()
  count += 1

和基础GAN Pytorch使用MNIST数据集实现基础GAN 里面的卷积版网络比较起来,这里修改的主要是这几个地方:

生成网络的输入值增加了真实图片的类标签,生成网络的初始向量z_dimension之前用的是100维,由于MNIST有10类,Onehot以后一张图片的类标签是10维,所以将类标签放在后面z_dimension=100+10=110维;

训练生成器的时候,由于生成网络的输入向量z_dimension=110维,而且是100维随机向量和10维真实图片标签拼接,需要做相应的拼接操作;

z =torch.randn(num_img, 100) # 随机生成向量
z=np.concatenate((z.numpy(),labels_onehot),axis=1)
z=Variable(torch.from_numpy(z).float()).cuda()

由于计算Loss和生成网络的输入向量都需要用到真实图片的类标签,需要重新生成real_label,对label进行onehot。其中real_label就是真实图片的标签,当num_img=100时,real_label的维度是(100,10);

labels_onehot = np.zeros((num_img,10))
labels_onehot[np.arange(num_img),label.numpy()]=1
img=Variable(img).cuda()
real_label=Variable(torch.from_numpy(labels_onehot).float()).cuda()#真实label为1
fake_label=Variable(torch.zeros(num_img,10)).cuda()#假的label为0

real_label的维度是(100,10),计算Loss的时候也要有对应的维度,判别网络的输出也不再是标量,而是要修改为10维;

nn.Linear(1024, 10)

在输出图片的同时输出期望的类标签。

temp=temp.to('cpu')
_,x=torch.max(temp,1)#返回值有两个,第一个是按列的最大值,第二个是相应最大值的列标号
x=x.numpy()
print(x[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]])

epoch等于0、25、50、75、100时训练的结果:

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

可以看到训练到后面图像反而变模糊可能是训练过拟合

用模型生成指定的数字:

在训练的过程中保存了训练好的模型,根据输出图片的清晰度,用清晰度较高的模型,使用随机向量和10维类标签来指定生成的数字。

import torch
import torch.nn as nn
import pickle
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
num_img=9
class discriminator(nn.Module):
 def __init__(self):
  super(discriminator, self).__init__()
  self.dis = nn.Sequential(
   nn.Conv2d(1, 32, 5, stride=1, padding=2),
   nn.LeakyReLU(0.2, True),
   nn.MaxPool2d((2, 2)),
 
   nn.Conv2d(32, 64, 5, stride=1, padding=2),
   nn.LeakyReLU(0.2, True),
   nn.MaxPool2d((2, 2))
  )
  self.fc = nn.Sequential(
   nn.Linear(7 * 7 * 64, 1024),
   nn.LeakyReLU(0.2, True),
   nn.Linear(1024, 10),
   nn.Sigmoid()
  )
 
 def forward(self, x):
  x = self.dis(x)
  x = x.view(x.size(0), -1)
  x = self.fc(x)
  return x
 
 
class generator(nn.Module):
 def __init__(self, input_size, num_feature):
  super(generator, self).__init__()
  self.fc = nn.Linear(input_size, num_feature) # 1*56*56
  self.br = nn.Sequential(
   nn.BatchNorm2d(1),
   nn.ReLU(True)
  )
  self.gen = nn.Sequential(
   nn.Conv2d(1, 50, 3, stride=1, padding=1),
   nn.BatchNorm2d(50),
   nn.ReLU(True),
 
   nn.Conv2d(50, 25, 3, stride=1, padding=1),
   nn.BatchNorm2d(25),
   nn.ReLU(True),
 
   nn.Conv2d(25, 1, 2, stride=2),
   nn.Tanh()
  )
 
 def forward(self, x):
  x = self.fc(x)
  x = x.view(x.size(0), 1, 56, 56)
  x = self.br(x)
  x = self.gen(x)
  return x
 
 
def show(images):
 images = images.detach().numpy()
 images = 255 * (0.5 * images + 0.5)
 images = images.astype(np.uint8)
 plt.figure(figsize=(4, 4))
 width = images.shape[2]
 gs = gridspec.GridSpec(1, num_img, wspace=0, hspace=0)
 for i, img in enumerate(images):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width, width), cmap=plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
 plt.tight_layout()
 # plt.savefig(r'drive/深度学习/DCGAN/images/%d.png' % count, bbox_inches='tight')
 return width
 
def show_all(images_all):
 x=images_all[0]
 for i in range(1,len(images_all),1):
  x=np.concatenate((x,images_all[i]),0)
 print(x.shape)
 x = 255 * (0.5 * x + 0.5)
 x = x.astype(np.uint8)
 plt.figure(figsize=(9, 10))
 width = x.shape[2]
 gs = gridspec.GridSpec(10, num_img, wspace=0, hspace=0)
 for i, img in enumerate(x):
  ax = plt.subplot(gs[i])
  ax.set_xticklabels([])
  ax.set_yticklabels([])
  ax.set_aspect('equal')
  plt.imshow(img.reshape(width, width), cmap=plt.cm.gray)
  plt.axis('off')
  plt.tight_layout()
 
 
 # 导入相应的模型
z_dimension = 110
D = discriminator()
G = generator(z_dimension, 3136) # 1*56*56
D.load_state_dict(torch.load(r'./CGAN/Discriminator.pkl'))
G.load_state_dict(torch.load(r'./CGAN/Generator.pkl'))
# 依次生成0到9
lis=[]
for i in range(10):
 z = torch.randn((num_img, 100)) # 随机生成向量
 x=np.zeros((num_img,10))
 x[:,i]=1
 z = np.concatenate((z.numpy(), x),1)
 z = torch.from_numpy(z).float()
 fake_img = G(z) # 将向量放入生成网络G生成一张图片
 lis.append(fake_img.detach().numpy())
 output = D(fake_img) # 经过判别器得到结果
 show(fake_img)
 plt.savefig('./CGAN/generator/%d.png' % i, bbox_inches='tight')
 
show_all(lis)
plt.savefig('./CGAN/generator/all.png', bbox_inches='tight')
plt.show()

生成的结果是:

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

以上这篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简述Python中的面向对象编程的概念
Apr 27 Python
Python中内建函数的简单用法说明
May 05 Python
在python3环境下的Django中使用MySQL数据库的实例
Aug 29 Python
python中从str中提取元素到list以及将list转换为str的方法
Jun 26 Python
Python爬虫实现简单的爬取有道翻译功能示例
Jul 13 Python
python将pandas datarame保存为txt文件的实例
Feb 12 Python
VPS CENTOS 上配置python,mysql,nginx,uwsgi,django的方法详解
Jul 01 Python
Pandas缺失值2种处理方式代码实例
Jun 13 Python
Python如何操作docker redis过程解析
Aug 10 Python
python某漫画app逆向
Mar 31 Python
一些让Python代码简洁的实用技巧总结
Aug 23 Python
pandas中关于apply+lambda的应用
Feb 28 Python
pytorch实现mnist分类的示例讲解
Jan 10 #Python
pytorch 准备、训练和测试自己的图片数据的方法
Jan 10 #Python
pytorch GAN伪造手写体mnist数据集方式
Jan 10 #Python
MNIST数据集转化为二维图片的实现示例
Jan 10 #Python
pytorch:实现简单的GAN示例(MNIST数据集)
Jan 10 #Python
pytorch GAN生成对抗网络实例
Jan 10 #Python
解决pytorch报错:AssertionError: Invalid device id的问题
Jan 10 #Python
You might like
ThinkPHP查询语句与关联查询用法实例
2014/11/01 PHP
thinkphp整合微信支付代码分享
2016/11/24 PHP
详解PHP文件的自动加载(autoloading)
2018/02/04 PHP
ppk谈JavaScript style属性
2008/10/10 Javascript
JQuery 学习笔记 选择器之一
2009/07/23 Javascript
jQuery $.each的用法说明
2010/03/22 Javascript
jquery解析xml字符串示例分享
2014/03/25 Javascript
JavaScript数据类型检测代码分享
2015/01/26 Javascript
JavaScript中的pow()方法使用详解
2015/06/15 Javascript
js实现开启密码大写提示
2016/12/21 Javascript
jQuery EasyUI 组件加上“清除”功能实例详解
2017/04/11 jQuery
bootstrap timepicker在angular中取值并转化为时间戳
2017/06/13 Javascript
Python实现删除Android工程中的冗余字符串
2015/01/19 Python
Python 'takes exactly 1 argument (2 given)' Python error
2016/12/13 Python
Python中模块string.py详解
2017/03/12 Python
python pandas中DataFrame类型数据操作函数的方法
2018/04/08 Python
python实现微信每日一句自动发送给喜欢的人
2019/04/29 Python
使用python实现简单五子棋游戏
2019/06/18 Python
python使用html2text库实现从HTML转markdown的方法详解
2020/02/21 Python
jupyter notebook 添加kernel permission denied的操作
2020/04/21 Python
 Alo Yoga官网:购买瑜伽服装
2018/06/17 全球购物
智能电子秤、手表和健康监测仪:Withings(之前为诺基亚健康)
2018/10/30 全球购物
企业治理工作自我评价
2013/09/26 职场文书
医院实习接收函
2014/01/12 职场文书
力学专业求职信
2014/07/23 职场文书
公安局副政委班子个人对照检查材料
2014/10/04 职场文书
四风批评与自我批评发言稿
2014/10/14 职场文书
小学一年级数学教学计划
2015/01/20 职场文书
2015年暑期社会实践方案
2015/07/14 职场文书
新娘婚礼答谢词
2015/09/29 职场文书
小学生反邪教心得体会
2016/01/15 职场文书
高中信息技术教学反思
2016/02/16 职场文书
2019年亲子运动会口号
2019/10/11 职场文书
忘记Grafana不要紧2种Grafana重置admin密码方法详细步骤
2022/04/07 Servers
python解析json数据
2022/04/29 Python
SQL Server中搜索特定的对象
2022/05/25 SQL Server