Python常见的pandas用法demo示例


Posted in Python onMarch 16, 2019

本文实例总结了Python常见的pandas用法。分享给大家供大家参考,具体如下:

import numpy as np
import pandas as pd
s = pd.Series([1,3,6, np.nan, 44, 1]) #定义一个序列。 序列就是一列内容,每一行有一个index值
print(s)
print(s.index)

0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64
RangeIndex(start=0, stop=6, step=1)

dates = pd.date_range('20180101', periods=6)
print(dates)

DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06'],
              dtype='datetime64[ns]', freq='D')

df1 = pd.DataFrame(np.arange(12).reshape(3,4)) #定义DataFrame,可以看作一个有index和colunms的矩阵
print(df)

   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a', 'b', 'c', 'd']) #np.random.randn(6,4)生成6行4列矩阵
print(df)

                   a         b         c         d
2018-01-01  0.300675  1.769383  1.244406 -1.058294
2018-01-02  0.832666  2.216755  0.178716 -0.156828
2018-01-03  1.314190 -0.866199  0.836150  1.001026
2018-01-04 -1.671724  1.147406 -0.148676 -0.272555
2018-01-05  1.146664  2.022861 -1.833995 -0.627568
2018-01-06 -0.192242  1.517676  0.756707  0.058869

df = pd.DataFrame({'A':1.0,
          'B':pd.Timestamp('20180101'),
          'C':pd.Series(1, index=list(range(4)), dtype='float32'),
          'D':np.array([3] * 4, dtype='int32'),
          'E':pd.Categorical(['test', 'train', 'test', 'train']),
          'F':'foo'}) #按照给出的逐列定义df

print(df)
print(df.dtypes)

     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
2  1.0 2018-01-01  1.0  3   test  foo
3  1.0 2018-01-01  1.0  3  train  foo
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

#df的行、列、值
print(df.index)
print(df.columns)
print(df.values)

Int64Index([0, 1, 2, 3], dtype='int64')
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
[[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']]

print(df.describe()) #统计
print(df.T) #转置

         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
                     0                    1                    2  \
A                    1                    1                    1
B  2018-01-01 00:00:00  2018-01-01 00:00:00  2018-01-01 00:00:00
C                    1                    1                    1
D                    3                    3                    3
E                 test                train                 test
F                  foo                  foo                  foo
                     3
A                    1
B  2018-01-01 00:00:00
C                    1
D                    3
E                train
F                  foo

#df排序
print(df.sort_index(axis=1, ascending=False)) #根据索引值对各行进行排序(相当于重新排列各列的位置)
print(df.sort_values(by='E')) #根据内容值对各列进行排序

     F      E  D    C          B    A
0  foo   test  3  1.0 2018-01-01  1.0
1  foo  train  3  1.0 2018-01-01  1.0
2  foo   test  3  1.0 2018-01-01  1.0
3  foo  train  3  1.0 2018-01-01  1.0
     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
2  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
3  1.0 2018-01-01  1.0  3  train  foo

indexes = pd.date_range('20180101', periods=6)
df3 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes, columns=['A', 'B', 'C', 'D'])
print(df3)
print()
#选择column
print(df3['A'])
print()
print(df3.A)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11

#选择行, 类似limit语句
print(df3[0:0])
print()
print(df3[0:3])
print()
print(df3['20180103':'20180105'])

Empty DataFrame
Columns: [A, B, C, D]
Index: []
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19

print(df3.loc['20180102']) #返回指定行构成的序列

A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32

print(df3.loc['20180103', ['A','C']]) #列筛选
print()
print(df3.loc['20180103':'20180105', ['A','C']]) #子df,类似select A, C from df limit ...
print()
print(df3.loc[:, ['A', 'B']])

A     8
C    10
Name: 2018-01-03 00:00:00, dtype: int32
             A   C
2018-01-03   8  10
2018-01-04  12  14
2018-01-05  16  18
             A   B
2018-01-01   0   1
2018-01-02   4   5
2018-01-03   8   9
2018-01-04  12  13
2018-01-05  16  17
2018-01-06  20  21

print(df3);print()
print(df3.iloc[1]);print()
print(df3.iloc[1,1]);print()
print(df3.iloc[:,1]);print()
print(df3.iloc[0:3,1:3]);print()
print(df3.iloc[[1,3,5],[0,2]]) #行可以不连续,limit做不到

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32
5
2018-01-01     1
2018-01-02     5
2018-01-03     9
2018-01-04    13
2018-01-05    17
2018-01-06    21
Freq: D, Name: B, dtype: int32
            B   C
2018-01-01  1   2
2018-01-02  5   6
2018-01-03  9  10
             A   C
2018-01-02   4   6
2018-01-04  12  14
2018-01-06  20  22

# print(df3.ix[:3, ['A', 'C']])\
print(df3);print()
print(df3[df3.A >= 8]) #根据值进行条件过滤,类似where A >= 8条件语句

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23

indexes1 = pd.date_range('20180101', periods=6)
df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])
print(df4);print()
#给某个元素赋值
df4.A[1] = 1111
df4.B['20180103'] = 2222
df4.iloc[3, 2] = 3333
df4.loc['20180105', 'D'] = 4444
print(df4);print()
#范围赋值
df4.B[df4.A < 10] = -1
print(df4);print()
df4[df4.A < 10] = 0
print(df4);print()

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
               A     B     C     D
2018-01-01     0     1     2     3
2018-01-02  1111     5     6     7
2018-01-03     8  2222    10    11
2018-01-04    12    13  3333    15
2018-01-05    16    17    18  4444
2018-01-06    20    21    22    23
               A   B     C     D
2018-01-01     0  -1     2     3
2018-01-02  1111   5     6     7
2018-01-03     8  -1    10    11
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23
               A   B     C     D
2018-01-01     0   0     0     0
2018-01-02  1111   5     6     7
2018-01-03     0   0     0     0
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23

indexes1 = pd.date_range('20180101', periods=6)
df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])
print(df4);print()
#添加一列
df4['E'] = np.NaN
print(df4);print()
#由于index没对齐,原df没有的行默认为NaN,类型为float64,多出的行丢弃
df4['F'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180102', periods=6))
print(df4);print()
print(df4.dtypes)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D   E
2018-01-01   0   1   2   3 NaN
2018-01-02   4   5   6   7 NaN
2018-01-03   8   9  10  11 NaN
2018-01-04  12  13  14  15 NaN
2018-01-05  16  17  18  19 NaN
2018-01-06  20  21  22  23 NaN
             A   B   C   D   E    F
2018-01-01   0   1   2   3 NaN  NaN
2018-01-02   4   5   6   7 NaN  1.0
2018-01-03   8   9  10  11 NaN  2.0
2018-01-04  12  13  14  15 NaN  3.0
2018-01-05  16  17  18  19 NaN  4.0
2018-01-06  20  21  22  23 NaN  5.0
A      int32
B      int32
C      int32
D      int32
E    float64
F    float64
dtype: object

df_t = pd.DataFrame(np.arange(24).reshape(6, 4), index=[1,2,3,4,5,6], columns=['A', 'B', 'C', 'D'])
df_t.iloc[0, 1] = np.NaN
df_t.iloc[1, 2] = np.NaN
df = df_t.copy()
print(df);print()
print(df.dropna(axis=0, how='any'));print()
df = df_t.copy()
print(df.dropna(axis=1, how='any'));print()
df = df_t.copy()
df.C = np.NaN
print(df);print()
print(df.dropna(axis=1, how='all'));print()

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A     B     C   D
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A   D
1   0   3
2   4   7
3   8  11
4  12  15
5  16  19
6  20  23
    A     B   C   D
1   0   NaN NaN   3
2   4   5.0 NaN   7
3   8   9.0 NaN  11
4  12  13.0 NaN  15
5  16  17.0 NaN  19
6  20  21.0 NaN  23
    A     B   D
1   0   NaN   3
2   4   5.0   7
3   8   9.0  11
4  12  13.0  15
5  16  17.0  19
6  20  21.0  23

df = df_t.copy()
print(df);print()
print(df.isna());print()
print(df.isnull().any());print() #isnull是isna别名,功能一样
print(df.isnull().any(axis=1));print()
print(np.any(df.isna() == True));print()
print(df.fillna(value=0)) #将NaN赋值

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
       A      B      C      D
1  False   True  False  False
2  False  False   True  False
3  False  False  False  False
4  False  False  False  False
5  False  False  False  False
6  False  False  False  False
A    False
B     True
C     True
D    False
dtype: bool
1     True
2     True
3    False
4    False
5    False
6    False
dtype: bool
True
    A     B     C   D
1   0   0.0   2.0   3
2   4   5.0   0.0   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23

data = pd.read_csv('D:/pythonwp/test/student.csv')
print(data)
data.to_pickle('D:/pythonwp/test/student.pickle')

   id     name  age  gender
0   1       牛帅   23    Male
1   2      gyb   89    Male
2   3      xxs   27    Male
3   4      hey   24  Female
4   5    奥莱利赫本   66  Female
5   6  Jackson   61    Male
6   7       牛帅   23    Male

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['A', 'B', 'C', 'D'])
print(df0); print()
print(df1); print()
print(df2); print()
res = pd.concat([df0, df1, df2], axis = 0)
print(res); print()
res = pd.concat([df0, df1, df2], axis = 0, ignore_index=True)
print(res)

     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
     A    B    C    D
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
5  1.0  1.0  1.0  1.0
6  2.0  2.0  2.0  2.0
7  2.0  2.0  2.0  2.0
8  2.0  2.0  2.0  2.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['E', 'F', 'C', 'D'])
res = pd.concat([df0, df1], ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], join='outer', ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], join='inner',ignore_index=True)
print(res);print()

     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     C    D
0  0.0  0.0
1  0.0  0.0
2  0.0  0.0
3  1.0  1.0
4  1.0  1.0
5  1.0  1.0

#横向合并
df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])
print(df0);print()
print(df1);print()
res = pd.concat([df0, df1], axis=1)
print(res);print()
res = pd.concat([df0, df1], axis=1, join='inner', ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], axis=1, join_axes=[df0.index])
print(res);print()

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
     0    1    2    3    4    5    6    7
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])
print(df0);print()
print(df1);print()
res = df0.append([df1, df1], ignore_index=False)
print(res);print()
s = pd.Series([1,2,3,4], index=['A','B','C','E'])
print(df0.append(s, ignore_index=True))

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    E
0  0.0  0.0  0.0  0.0  NaN
1  0.0  0.0  0.0  0.0  NaN
2  0.0  0.0  0.0  0.0  NaN
3  1.0  2.0  3.0  NaN  4.0

df1 = pd.DataFrame({'key':['K0', 'K1', 'K2'],
          'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']})
df2 = pd.DataFrame({'key':['K3', 'K1', 'K2'],
          'C':['C3', 'C1', 'C2'],
          'D':['D3', 'D1', 'D2']})
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, on='key')
print(res); print()
res = pd.merge(df1, df2, on='key', how='outer')
print(res); print()
res = pd.merge(df1, df2, on='key', how='left')
print(res); print()
res = pd.merge(df1, df2, on='key', how='right')
print(res); print()

    A   B key
0  A0  B0  K0
1  A1  B1  K1
2  A2  B2  K2
    C   D key
0  C3  D3  K3
1  C1  D1  K1
2  C2  D2  K2
    A   B key   C   D
0  A1  B1  K1  C1  D1
1  A2  B2  K2  C2  D2
     A    B key    C    D
0   A0   B0  K0  NaN  NaN
1   A1   B1  K1   C1   D1
2   A2   B2  K2   C2   D2
3  NaN  NaN  K3   C3   D3
    A   B key    C    D
0  A0  B0  K0  NaN  NaN
1  A1  B1  K1   C1   D1
2  A2  B2  K2   C2   D2
     A    B key   C   D
0   A1   B1  K1  C1  D1
1   A2   B2  K2  C2  D2
2  NaN  NaN  K3  C3  D3

df1 = pd.DataFrame({'key1':['K0', 'K0', 'K1'],
          'key2':['K0', 'K1', 'K1'],
          'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']})
df2 = pd.DataFrame({'key1':['K0', 'K0', 'K1', 'K2'],
          'key2':['K0', 'K0', 'K1', 'K2'],
          'C':['C3', 'C1', 'C2', 'C4'],
          'D':['D3', 'D1', 'D2', 'D4']})
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, on=['key1','key2'])
print(res); print()
res = pd.merge(df1, df2, on=['key1','key2'], how='outer', indicator='indi')
print(res); print()

    A   B key1 key2
0  A0  B0   K0   K0
1  A1  B1   K0   K1
2  A2  B2   K1   K1
    C   D key1 key2
0  C3  D3   K0   K0
1  C1  D1   K0   K0
2  C2  D2   K1   K1
3  C4  D4   K2   K2
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C3  D3
1  A0  B0   K0   K0  C1  D1
2  A2  B2   K1   K1  C2  D2
     A    B key1 key2    C    D        indi
0   A0   B0   K0   K0   C3   D3        both
1   A0   B0   K0   K0   C1   D1        both
2   A1   B1   K0   K1  NaN  NaN   left_only
3   A2   B2   K1   K1   C2   D2        both
4  NaN  NaN   K2   K2   C4   D4  right_only

#以上是根据值合并。下面根据index合并
df1 = pd.DataFrame({'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']},
          index=['index0', 'index1', 'index2'])
df2 = pd.DataFrame({'A':['C3', 'C1', 'C2'],
          'D':['D3', 'D1', 'D2']},
          index=['index3', 'index1', 'index2'])
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, left_index=True, right_index=True)
print(res); print()
res = pd.merge(df1, df2, left_index=True, right_index=True, how='outer', suffixes=['_b', '_g'])
print(res); print()

         A   B
index0  A0  B0
index1  A1  B1
index2  A2  B2
         A   D
index3  C3  D3
index1  C1  D1
index2  C2  D2
       A_x   B A_y   D
index1  A1  B1  C1  D1
index2  A2  B2  C2  D2
        A_b    B  A_g    D
index0   A0   B0  NaN  NaN
index1   A1   B1   C1   D1
index2   A2   B2   C2   D2
index3  NaN  NaN   C3   D3

res = df1.join(df2, how='outer', lsuffix='_left', rsuffix='_right') #不用on默认用索引合并
print(res);print()
res = df1.join(df2, on='B', how='outer', lsuffix='_left', rsuffix='_right') #用on指定df1的某列和df2的索引合并
print(res);print()

       A_left    B A_right    D
index0     A0   B0     NaN  NaN
index1     A1   B1      C1   D1
index2     A2   B2      C2   D2
index3    NaN  NaN      C3   D3
       A_left       B A_right    D
index0     A0      B0     NaN  NaN
index1     A1      B1     NaN  NaN
index2     A2      B2     NaN  NaN
index2    NaN  index3      C3   D3
index2    NaN  index1      C1   D1
index2    NaN  index2      C2   D2

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt #画图模块
s = pd.Series(np.random.randn(1000), index=np.arange(1000))
s = s.cumsum()
#须在命令行执行, jupyter会报错
#s.plot()
#plt.show()
df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'])
df = df.cumsum()
print(df.head()); print() #head默认显示前5行
#须在命令行执行, jupyter会报错
#s.plot()
#plt.show()
#须在命令行执行, jupyter会报错
#'bar', 'hist', 'box', 'kde', 'area', 'scatter', 'hexbin', 'pie'...
#class_B = df.plot.scatter(x='A', y='B', color='DarkBlue', label='Class B') #画图,scatter<散点图>
#df.plot.scatter(x='A', y='C', color='DarkRed', label='Class C', class_B=class_B)
#plt.show()

          A         B         C
0 -0.399363 -1.004210  0.641141
1 -1.970009 -0.608482 -0.758504
2 -3.081640 -0.617352 -1.143872
3 -2.174627 -1.383785 -1.011411
4 -1.415515 -1.892226 -2.511739

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python中使用 Selenium 实现网页截图实例
Jul 18 Python
python操作ssh实现服务器日志下载的方法
Jun 03 Python
Python切换pip安装源的方法详解
Nov 18 Python
深入浅出学习python装饰器
Sep 29 Python
Python paramiko模块的使用示例
Apr 11 Python
python-opencv颜色提取分割方法
Dec 08 Python
python 多线程重启方法
Feb 18 Python
在Python中获取操作系统的进程信息
Aug 27 Python
python如何对链表操作
Oct 10 Python
详解pycharm的python包opencv(cv2)无代码提示问题的解决
Jan 29 Python
Matlab如何实现矩阵复制扩充
Jun 02 Python
Python预测分词的实现
Jun 18 Python
详解python中list的使用
Mar 15 #Python
详解Python_shutil模块
Mar 15 #Python
python批量修改文件夹及其子文件夹下的文件内容
Mar 15 #Python
使用PyQtGraph绘制精美的股票行情K线图的示例代码
Mar 14 #Python
详解Django+uwsgi+Nginx上线最佳实战
Mar 14 #Python
TensorFlow卷积神经网络之使用训练好的模型识别猫狗图片
Mar 14 #Python
Python通过TensorFlow卷积神经网络实现猫狗识别
Mar 14 #Python
You might like
使用MaxMind 根据IP地址对访问者定位
2006/10/09 PHP
ajax+php打造进度条代码[readyState各状态说明]
2010/04/12 PHP
php下获取Discuz论坛登录用户名、用户组、用户ID等信息的实现代码
2010/12/29 PHP
简单了解WordPress开发中update_option()函数的用法
2016/01/11 PHP
php文件上传后端处理小技巧
2016/05/22 PHP
关于php开启错误提示的总结
2019/09/24 PHP
javascript fullscreen全屏实现代码
2009/04/09 Javascript
前台js调用后台方法示例
2013/12/02 Javascript
JS实现根据当前文字选择返回被选中的文字
2014/05/21 Javascript
Node.js的包详细介绍
2015/01/14 Javascript
Javascript验证方法大全
2015/09/21 Javascript
Select下拉框模糊查询功能实现代码
2016/07/22 Javascript
AngularJS实现网站换肤实例
2021/02/19 Javascript
xmlplus组件设计系列之选项卡(Tabbar)(5)
2017/05/03 Javascript
vue自动化表单实例分析
2018/05/06 Javascript
jQuery AJAX 方法success()后台传来的4种数据详解
2018/08/08 jQuery
Angular项目如何升级至Angular6步骤全纪录
2018/09/03 Javascript
Koa 使用小技巧(小结)
2018/10/22 Javascript
浅谈vue中组件绑定事件时是否加.native
2019/11/09 Javascript
django框架实现模板中获取request 的各种信息示例
2019/07/01 Python
浅谈Pytorch中的torch.gather函数的含义
2019/08/18 Python
Python响应对象text属性乱码解决方案
2020/03/31 Python
Python flask框架如何显示图像到web页面
2020/06/03 Python
html5教程实现Photoshop渐变色效果
2013/12/04 HTML / CSS
HTML利用九宫格原理进行网页布局
2020/03/13 HTML / CSS
Hotels.com中国区:好订网
2016/08/18 全球购物
英国最大的经认证的有机超市:Planet Organic
2018/02/02 全球购物
顶碗少年教学反思
2014/02/21 职场文书
珍惜资源的建议书
2014/08/26 职场文书
群众路线班子对照检查材料
2014/09/25 职场文书
班主任经验交流材料
2014/12/16 职场文书
家长反馈意见及建议
2015/06/03 职场文书
婚礼上证婚人致辞
2015/07/28 职场文书
小学数学教师研修感悟
2015/11/18 职场文书
《草虫的村落》教学反思
2016/02/20 职场文书
MongoDB数据库常用的10条操作命令
2021/06/18 MongoDB