python生成器与迭代器详解


Posted in Python onJanuary 01, 2019

列表生成式:

例一:

a = [i+1 for i in range(10)]
print(a)

输出:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

例二:

L = [1, 2, 3, 4, 5]
print([i*i for i in L if i>3])

输出:

[16, 25]

例三:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
print([i*a for i in L for a in I if i > 2 if a < 8])

输出:

[18, 21, 24, 28, 30, 35]

生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

示例:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(g)

输出:

<generator object <genexpr> at 0x00000276586C1F48>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,可以通过generator的next()方法

next(g)

例一:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(next(g))
print(next(g))
print(next(g))

输出:

6
7
8

例二:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I if i > 2 if a < 8)
print(next(g))
print(next(g))
print(next(g))

输出:

18
21
24

因为generator保存的是算法,每次调用next(g)就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。正确的方法是使用for循环,因为generator也是可迭代对象:

例三:

g = (i*i for i in range(0, 5))
for i in g:
    print(i)

当我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)
1
1
2
3
5
8

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
  n,a,b = 0,0,1

  while n < max:
    #print(b)
    yield b
    a,b = b,a+b

    n += 1

  return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'
print(fib(5))

输出:

<generator object fib at 0x0000023DC66C1F48>

调用方法:   ##但是用for循环调用generator时,\
            ##发现拿不到generator的return语句\
            ##的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

for i in fib(5):
    print(i)

输出:

1
1
2
3
5

或者:

date = fib(5)
print(date.__next__())
print(date.__next__())
print(date.__next__())
print('test')
print(date.__next__())
print(date.__next__())

输出:

1
1
2
test
3
5

send方法有一个参数,该参数指定的是上一次被挂起的yield语句的返回值

还可通过yield实现在单线程的情况下实现并发运算的效果

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import time
def consumer(name):
  print("%s 准备吃包子啦!" %name)
  while True:
    baozi = yield

    print("包子[%s]来了,被[%s]吃了!" %(baozi,name))


def producer(name):
  c = consumer('A')
  c2 = consumer('B')
  c.__next__()
  c2.__next__()
  print("老子开始准备做包子啦!")
  for i in range(10):
    time.sleep(1)
    print("做了2个包子!")
    c.send(i)
    c2.send(i)

producer("alex")

通过生成器实现协程并行运算

迭代器:

可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

Python 相关文章推荐
Python 文件和输入输出小结
Oct 09 Python
通过代码实例展示Python中列表生成式的用法
Mar 31 Python
在CentOS上配置Nginx+Gunicorn+Python+Flask环境的教程
Jun 07 Python
Python可变参数用法实例分析
Apr 02 Python
Python书单 不将就
Jul 11 Python
Python实现图片转字符画的示例
Aug 22 Python
python虚拟环境virtualenv的使用教程
Oct 20 Python
使用python将图片按标签分入不同文件夹的方法
Dec 08 Python
如何使用Python标准库进行性能测试
Jun 25 Python
python自动下载图片的方法示例
Mar 25 Python
Python基于QQ邮箱实现SSL发送
Apr 26 Python
python爬虫scrapy基本使用超详细教程
Feb 20 Python
使用python3实现操作串口详解
Jan 01 #Python
python实现生成字符串大小写字母和数字的各种组合
Jan 01 #Python
python 内置模块详解
Jan 01 #Python
python配置grpc环境
Jan 01 #Python
python制作mysql数据迁移脚本
Jan 01 #Python
在python中将字符串转为json对象并取值的方法
Dec 31 #Python
对python中Json与object转化的方法详解
Dec 31 #Python
You might like
PHP开发中四种查询返回结果分析
2011/01/02 PHP
解决PHP mysql_query执行超时(Fatal error: Maximum execution time …)
2013/07/03 PHP
Codeigniter校验ip地址的方法
2015/03/21 PHP
?牟┛途W扣了一??效果出?? target=
2007/05/27 Javascript
javascript event 事件解析
2011/01/31 Javascript
JavaScript传递变量: 值传递?引用传递?
2011/02/22 Javascript
JavaScript高级程序设计 阅读笔记(二十一) JavaScript中的XML
2012/09/14 Javascript
javascript实现tabs选项卡切换效果(扩展版)
2013/03/19 Javascript
用jquery实现输入框获取焦点消失文字
2013/04/27 Javascript
js使用removeChild方法动态删除div元素
2014/08/01 Javascript
Javascript 拖拽的一些简单的应用(逐行分析代码,让你轻松了拖拽的原理)
2015/01/23 Javascript
Node.js和MongoDB实现简单日志分析系统
2015/04/25 Javascript
jquery控制表单输入框显示默认值的方法
2015/05/22 Javascript
jquery实现两个图片渐变切换效果的方法
2015/06/25 Javascript
vue.js单页面应用实例的简单实现
2017/04/10 Javascript
easyui-datagrid特殊字符不能显示的处理方法
2017/04/12 Javascript
微信小程序实战之仿android fragment可滑动底部导航栏(4)
2020/04/16 Javascript
nodejs使用express获取get和post传值及session验证的方法
2017/11/09 NodeJs
layui实现数据分页功能(ajax异步)
2019/07/27 Javascript
浅谈Vue 函数式组件的使用技巧
2020/06/16 Javascript
[02:03]完美世界DOTA2联赛10月30日赛事集锦
2020/10/31 DOTA
Windows上使用Python增加或删除权限的方法
2018/04/24 Python
django中静态文件配置static的方法
2018/05/20 Python
python中ASCII码和字符的转换方法
2018/07/09 Python
Python3.4学习笔记之类型判断,异常处理,终止程序操作小结
2019/03/01 Python
Python批量获取并保存手机号归属地和运营商的示例
2020/10/09 Python
协程Python 中实现多任务耗资源最小的方式
2020/10/19 Python
利用css3画个同心圆示例代码
2017/07/03 HTML / CSS
美国CVS药店官网:CVS Pharmacy
2018/07/26 全球购物
写好求职信第一句话的技巧
2013/10/26 职场文书
入党积极分子思想汇报范文
2014/01/05 职场文书
实习评语大全
2014/04/26 职场文书
2014最新版群众路线四风整改措施
2014/09/24 职场文书
升学宴祝酒词
2015/08/11 职场文书
爱国主义主题班会
2015/08/14 职场文书
Django框架中表单的用法
2022/06/10 Python