对python制作自己的数据集实例讲解


Posted in Python onDecember 12, 2018

一、数据集介绍

点击打开链接17_Category_Flower 是一个不同种类鲜花的图像数据,包含 17 不同种类的鲜花,每类 80 张该类鲜花的图片,鲜花种类是英国地区常见鲜花。下载数据后解压文件,然后将不同的花剪切到对应的文件夹,如下图所示:

对python制作自己的数据集实例讲解

每个文件夹下面有80个图片文件。

二、使用的工具

首先是在tensorflow框架下,然后介绍一下用到的两个库,一个是os,一个是PIL。PIL(Python Imaging Library)是 Python 中最常用的图像处理库,而Image类又是 PIL库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。

三、代码实现

我们是通过TFRecords来创建数据集的,TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件(label)。

1、制作TFRecords文件

import os
import tensorflow as tf
from PIL import Image # 注意Image,后面会用到
import matplotlib.pyplot as plt
import numpy as np
 
cwd = 'D:\PyCharm Community Edition 2017.2.3\Work\google_net\jpg\\'
classes = {'daffodil', 'snowdrop', 'lilyvalley', 'bluebell', 'crocus', 'iris', 'tigerlily', 'tulip', 'fritiuary',
  'sunflower', 'daisy', 'coltsfoot', 'dandelion', 'cowslip', 'buttercup', 'windflower', 'pansy'} # 花为 设定 17 类
writer = tf.python_io.TFRecordWriter("flower_train.tfrecords") # 要生成的文件
 
for index, name in enumerate(classes):
 class_path = cwd + name + '\\'
 for img_name in os.listdir(class_path):
 img_path = class_path + img_name # 每一个图片的地址
 img = Image.open(img_path)
 img = img.resize((224, 224))
 img_raw = img.tobytes() # 将图片转化为二进制格式
 example = tf.train.Example(features=tf.train.Features(feature={
  "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
  'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
 })) # example对象对label和image数据进行封装
 writer.write(example.SerializeToString()) # 序列化为字符串
writer.close()

对python制作自己的数据集实例讲解

首先将文件移动到对应的路径:

D:\PyCharm Community Edition 2017.2.3\Work\google_net\jpg

然后对每个文件下的图片进行读写和相应的大小惊醒改变,具体过程是使用tf.train.Example来定义我们要填入的数据格式,其中label即为标签,也就是最外层的文件夹名字,img_raw为易经理二进制化的图片。然后使用tf.python_io.TFRecordWriter来写入。基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List。就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。

执行完以上代码就会出现如下图所示的TF文件

对python制作自己的数据集实例讲解

2、读取TFRECORD文件

制作完文件后,将该文件读入到数据流中,具体代码如下:

def read_and_decode(filename): # 读入dog_train.tfrecords
 filename_queue = tf.train.string_input_producer([filename]) # 生成一个queue队列
 reader = tf.TFRecordReader()
 _, serialized_example = reader.read(filename_queue) # 返回文件名和文件
 features = tf.parse_single_example(serialized_example,
     features={
      'label': tf.FixedLenFeature([], tf.int64),
      'img_raw': tf.FixedLenFeature([], tf.string),
     }) # 将image数据和label取出来
 
 img = tf.decode_raw(features['img_raw'], tf.uint8)
 img = tf.reshape(img, [224, 224, 3]) # reshape为128*128的3通道图片
 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 # 在流中抛出img张量
 label = tf.cast(features['label'], tf.int32) # 在流中抛出label张量
 return img, label

注意,feature的属性“label”和“img_raw”名称要和制作时统一 ,返回的img数据和label数据一一对应。

3、显示tfrecord格式的图片

为了知道TF 文件的具体内容,或者是怕图片对应的label出错,可以将数据流以图片的形式读出来并保存以便查看,具体的代码如下:

filename_queue = tf.train.string_input_producer(["flower_train.tfrecords"]) # 读入流中
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) # 返回文件名和文件
features = tf.parse_single_example(serialized_example,
     features={
     'label': tf.FixedLenFeature([], tf.int64),
     'img_raw': tf.FixedLenFeature([], tf.string),
     }) # 取出包含image和label的feature对象
image = tf.decode_raw(features['img_raw'], tf.uint8)
image = tf.reshape(image, [224, 224, 3])
label = tf.cast(features['label'], tf.int32)
label = tf.one_hot(label, 17, 1, 0)
with tf.Session() as sess: # 开始一个会话
 init_op = tf.initialize_all_variables()
 sess.run(init_op)
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 for i in range(100):
 example, l = sess.run([image, label]) # 在会话中取出image和label
 img = Image.fromarray(example, 'RGB') # 这里Image是之前提到的
 img.save(cwd + str(i) + '_''Label_' + str(l) + '.jpg') # 存下图片
 print(example, l)
 coord.request_stop()
 coord.join(threads)

执行以上代码后,当前项目对应的文件夹下会生成100张图片,还有对应的label,如下图所示:

对python制作自己的数据集实例讲解

在这里我们可以看到,前80个图片文件的label是1,后20个图片的label是2。 由此可见,我们一开始制作tfrecord文件时,图片分类正确。

完整代码如下:

import os
import tensorflow as tf
from PIL import Image # 注意Image,后面会用到
import matplotlib.pyplot as plt
import numpy as np
 
cwd = 'D:\PyCharm Community Edition 2017.2.3\Work\google_net\jpg\\'
classes = {'daffodil', 'snowdrop', 'lilyvalley', 'bluebell', 'crocus', 'iris', 'tigerlily', 'tulip', 'fritiuary',
  'sunflower', 'daisy', 'coltsfoot', 'dandelion', 'cowslip', 'buttercup', 'windflower', 'pansy'} # 花为 设定 17 类
writer = tf.python_io.TFRecordWriter("flower_train.tfrecords") # 要生成的文件
 
for index, name in enumerate(classes):
 class_path = cwd + name + '\\'
 for img_name in os.listdir(class_path):
 img_path = class_path + img_name # 每一个图片的地址
 img = Image.open(img_path)
 img = img.resize((224, 224))
 img_raw = img.tobytes() # 将图片转化为二进制格式
 example = tf.train.Example(features=tf.train.Features(feature={
  "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
  'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
 })) # example对象对label和image数据进行封装
 writer.write(example.SerializeToString()) # 序列化为字符串
writer.close()
 
 
def read_and_decode(filename): # 读入dog_train.tfrecords
 filename_queue = tf.train.string_input_producer([filename]) # 生成一个queue队列
 reader = tf.TFRecordReader()
 _, serialized_example = reader.read(filename_queue) # 返回文件名和文件
 features = tf.parse_single_example(serialized_example,
     features={
      'label': tf.FixedLenFeature([], tf.int64),
      'img_raw': tf.FixedLenFeature([], tf.string),
     }) # 将image数据和label取出来
 
 img = tf.decode_raw(features['img_raw'], tf.uint8)
 img = tf.reshape(img, [224, 224, 3]) # reshape为128*128的3通道图片
 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 # 在流中抛出img张量
 label = tf.cast(features['label'], tf.int32) # 在流中抛出label张量
 return img, label
 
 
filename_queue = tf.train.string_input_producer(["flower_train.tfrecords"]) # 读入流中
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) # 返回文件名和文件
features = tf.parse_single_example(serialized_example,
     features={
     'label': tf.FixedLenFeature([], tf.int64),
     'img_raw': tf.FixedLenFeature([], tf.string),
     }) # 取出包含image和label的feature对象
image = tf.decode_raw(features['img_raw'], tf.uint8)
image = tf.reshape(image, [224, 224, 3])
label = tf.cast(features['label'], tf.int32)
label = tf.one_hot(label, 17, 1, 0)
with tf.Session() as sess: # 开始一个会话
 init_op = tf.initialize_all_variables()
 sess.run(init_op)
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 for i in range(100):
 example, l = sess.run([image, label]) # 在会话中取出image和label
 img = Image.fromarray(example, 'RGB') # 这里Image是之前提到的
 img.save(cwd + str(i) + '_''Label_' + str(l) + '.jpg') # 存下图片
 print(example, l)
 coord.request_stop()
 coord.join(threads)

本人也是刚刚学习深度学习,能力有限,不足之处请见谅,欢迎大牛一起讨论,共同进步!

以上这篇对python制作自己的数据集实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python学习笔记之常用函数及说明
May 23 Python
跟老齐学Python之print详解
Sep 28 Python
Python同时向控制台和文件输出日志logging的方法
May 26 Python
详解Python中的相对导入和绝对导入
Jan 06 Python
python 数据清洗之数据合并、转换、过滤、排序
Feb 12 Python
基于Django用户认证系统详解
Feb 21 Python
Python实用工具FuckIt.py介绍
Jul 02 Python
python实现操作文件(文件夹)
Oct 31 Python
如何在mac版pycharm选择python版本
Jul 21 Python
python爬取代理IP并进行有效的IP测试实现
Oct 09 Python
浅析pandas随机排列与随机抽样
Jan 22 Python
Python实现灰色关联分析与结果可视化的详细代码
Mar 25 Python
Python3爬虫学习之爬虫利器Beautiful Soup用法分析
Dec 12 #Python
Python解决线性代数问题之矩阵的初等变换方法
Dec 12 #Python
对python数据切割归并算法的实例讲解
Dec 12 #Python
python实现文本界面网络聊天室
Dec 12 #Python
Python3爬虫学习之应对网站反爬虫机制的方法分析
Dec 12 #Python
python实现简单多人聊天室
Dec 11 #Python
在python中利用KNN实现对iris进行分类的方法
Dec 11 #Python
You might like
PHP 批量删除 sql语句
2009/06/05 PHP
PHP下操作Linux消息队列完成进程间通信的方法
2010/07/24 PHP
PHP获取文件绝对路径的代码(上一级目录)
2011/05/29 PHP
神盾加密解密教程(三)PHP 神盾解密工具
2014/06/08 PHP
thinkPHP5框架中widget的功能与用法详解
2018/06/11 PHP
Laravel 模型使用软删除-左连接查询-表起别名示例
2019/10/24 PHP
javascript 字符 Escape,encodeURI,encodeURIComponent
2009/07/09 Javascript
JavaScript 编写匿名函数的几种方法
2010/02/21 Javascript
基于jquery的图片懒加载js
2010/06/30 Javascript
基于jquery的3d效果实现代码
2011/03/23 Javascript
IE8对JS通过属性和数组遍历解析不一样的地方探讨
2013/05/06 Javascript
鼠标滑过出现预览的大图提示效果
2014/02/26 Javascript
详解JavaScript对W3C DOM模版的支持情况
2015/06/16 Javascript
javascript 广告移动特效的实现代码
2016/06/25 Javascript
浅谈AngularJS中ng-class的使用方法
2016/11/11 Javascript
Angular.js中控制器之间的传值详解
2017/04/24 Javascript
JS实现统计字符串中字符出现个数及最大个数功能示例
2018/06/04 Javascript
解决vue中修改了数据但视图无法更新的情况
2018/08/27 Javascript
vue使用Sass时报错问题的解决方法
2020/10/14 Javascript
python使用百度翻译进行中翻英示例
2014/04/14 Python
Python中使用platform模块获取系统信息的用法教程
2016/07/08 Python
python 根据pid杀死相应进程的方法
2017/01/16 Python
python编程线性回归代码示例
2017/12/07 Python
ubuntu安装mysql pycharm sublime
2018/02/20 Python
解决Python 函数声明先后顺序出现的问题
2020/09/02 Python
python源文件的字符编码知识点详解
2021/03/04 Python
生产副总岗位职责
2013/11/28 职场文书
2014信息技术专业毕业生自我评价
2014/01/17 职场文书
党员一句话承诺大全
2014/03/28 职场文书
教师对学生的寄语
2014/04/03 职场文书
工作作风懒散检讨书
2014/10/29 职场文书
升职感谢信
2015/01/22 职场文书
拾金不昧表扬稿大全
2015/05/05 职场文书
比赛主持人开场白
2015/05/29 职场文书
运动会加油稿50字
2015/07/21 职场文书
浅谈Python numpy创建空数组的问题
2021/05/25 Python