Python中使用Opencv开发停车位计数器功能


Posted in Python onApril 04, 2022

在这个项目中,我们将创建一个停车位计数器。我们会发现总共有多少辆车,以及有多少停车位是空的。关于本教程最好的一点是,我们将使用基本的图像处理技术来解决这个问题,没有使用机器学习、深度学习进行训练来识别。

1. 环境安装

1.1 安装并激活虚拟环境

python -m venv venv
cd venv\Scripts
.\activate.bat

1.2 python包安装

pip install opencv-python

2. 绘制停车位矩形框

2.1 导入停车场图片

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.imshow("image",img)

Python中使用Opencv开发停车位计数器功能

2.2 绘制矩形框 定位停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.rectangle(img,(50,192),(157,240),(255,0,255),2)  #坐标位置可以多次尝试确定
cv2.imshow("image",img)
cv2.waitKey(0)

Python中使用Opencv开发停车位计数器功能

可以看出,每个停车位的估计宽、高为:

width=107  # 157-102
height = 48 # 240 - 192

2.3 鼠标添加、删除停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
while True:
	img = cv2.imread("carParkImg.png")
	cv2.imshow("images",img)
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("images",mouseClick)
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

Python中使用Opencv开发停车位计数器功能

通过鼠标点击在任何位置添加矩形框,但当矩形框位置出错时,无法进行删除。因此通过添加鼠标右键的事件,删除错误的矩形框。

def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)

通过pickle.dump()保持保存鼠标点击的位置信息。

with open('CarParkPos','wb') as f:
	pickle.dump(posList,f)

通过pickle.load()加载保存好的位置信息,即在原有的停车位添加或删除停车位,而不是每一帧画面重新绘制。

with open('CarParkPos','wb') as f:
	posList = pickle.load(f)

完整代码如下:

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
try:
	with open('CarParkPos','rb') as f:
		posList = pickle.load(f)
except:
	posList = []
# posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)
	
	with open('CarParkPos','wb') as f:
		pickle.dump(posList,f)
while True:
	img = cv2.imread("carParkImg.png")
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("image",mouseClick)
	
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

3. 停车位视频分析

3. 1 停车监控视频

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
while True:
    success,img= cap.read()
    cv2.imshow("Image",img)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

视频时间比较短,为了让视频循环播放,添加如下代码:

if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
	cap.set(cv2.CAP_PROP_POS_FRAMES,0)
  • cv2.CAP_PROP_POS_FRAMES :视频播放当前帧
  • cv2.CAP_PROP_FRAME_COUNT :视频总帧数

即:当前视频播放到结尾时,重新播放

3. 2 截取停车位

截取停车位,回来对每个停车位进行图像处理,从而分析该停车位是否被占用

def checkParkingSpace():
    for pos in posList:
        x,y = pos
        imgCrop=img[y:y+height,x:x+width]
        cv2.imshow(str(x*y),imgCrop)

Python中使用Opencv开发停车位计数器功能

3. 3 图像处理

对图像二值化、高斯模糊处理

imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)

Python中使用Opencv开发停车位计数器功能

利用自适应二值化对图像进行处理

imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)

cv2.adaptiveThreshold 参数的选择可以通过TrackBar拖到滚动条,直到选择合适的数值。

Python中使用Opencv开发停车位计数器功能

可以看出停车位上有车辆时白色像素点比较多,停车位没有车辆时,白色像素点很少甚至没有,因此我们可以基于白色像素点数量来确定该车为是否被占用。同时可以看到当停车位为空时存在一些椒盐噪声,通过medianBlur来处理椒盐噪声

imgMedian = cv2.medianBlur(imgThreshold,5)

Python中使用Opencv开发停车位计数器功能

可以看出椒盐噪声少了一部分。
使用dilate(膨胀)增强白色像素值,便于更好区分每个停车位是否被占用

kernel=np.ones((3,3),np.uint8);
 imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)

Python中使用Opencv开发停车位计数器功能

可以看出白色的轮廓比之前加厚了

3. 4 判断停车位是否被占用

截取每个停车位,经过处理后的图像,统计白色像素的数量
修改checkParkingSpace函数,将处理好的图像传入函数

def checkParkingSpace(imgProc):
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        cvzone.putTextRect(img,str(count),(x,y+height-3,scale =1.5,thickness=2,offset=0)

Python中使用Opencv开发停车位计数器功能

对比可以看出,占有车位的数值比较大1000-2000,空车位的200-500,数值的差距比较大。

画出所有停车位,对比找出合适的阈值,区分停车位为空还是被占用了。

Python中使用Opencv开发停车位计数器功能

可以看出停车位为空时,值为0-600,而停车位被占用,值为:960-2300,因此我们设定阈值为750。所以低于750此时停车位没有车,高于950则停车位有车。

Python中使用Opencv开发停车位计数器功能

加上文字描述

代码

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
with open('CarParkPos','rb') as f:
    posList = pickle.load(f)
width,height=107,48
def checkParkingSpace(imgProc):
    spaceCounter=0
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        
        if count < 950:
            color = (0,255,0)
            thickness = 5
            spaceCounter +=1
        else:
            color = (0,0,255)
            thickness = 2
        cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),color,thickness=thickness)
        cvzone.putTextRect(img,str(count),(x,y+height-5),scale =1.5,thickness=2,offset=0,colorR=color)
    cvzone.putTextRect(img,f'Free{spaceCounter}/{len(posList)}',(100,50),scale =3,thickness=5,offset=20,colorR=(0,200,0))
            
while True:
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
        cap.set(cv2.CAP_PROP_POS_FRAMES,0)
    
    success,img= cap.read()  
    imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)  
    imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)
    imgMedian = cv2.medianBlur(imgThreshold,5)
    kernel=np.ones((3,3),np.uint8);
    imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)
    checkParkingSpace(imgDilate)
    # for pos in posList:
    #     cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)
    cv2.imshow("Image",img)
    # cv2.imshow("imgBlur",imgBlur)
    # cv2.imshow("imgThreshold",imgThreshold)
    # cv2.imshow("imgMedian",imgMedian)
    # cv2.imshow("imgDilate",imgDilate)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

最终效果如下:

Python中使用Opencv开发停车位计数器功能

源码链接:https://github.com/yuanxinshui/Opencv-project/tree/main/39%20Parking%20Space%20Counter

到此这篇关于Python中使用Opencv开发停车位计数器的文章就介绍到这了,更多相关python Opencv停车位计数器内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python网络编程实例简析
Sep 26 Python
简单的python协同过滤程序实例代码
Jan 31 Python
python基础学习之如何对元组各个元素进行命名详解
Jul 12 Python
Python requests库用法实例详解
Aug 14 Python
Python图像的增强处理操作示例【基于ImageEnhance类】
Jan 03 Python
详解python算法之冒泡排序
Mar 05 Python
python中的协程深入理解
Jun 10 Python
简单了解django索引的相关知识
Jul 17 Python
Python爬取破解无线网络wifi密码过程解析
Sep 17 Python
python 使用事件对象asyncio.Event来同步协程的操作
May 04 Python
Python如何合并多个字典或映射
Jul 24 Python
Python爬取12306车次信息代码详解
Aug 12 Python
Python采集股票数据并制作可视化柱状图
python疲劳驾驶困倦低头检测功能的实现
Python实现自动玩连连看的脚本分享
Apr 04 #Python
Python利用Turtle绘制哆啦A梦和小猪佩奇
Python必备技巧之函数的使用详解
Python批量解压&压缩文件夹的示例代码
Apr 04 #Python
Python调用腾讯API实现人脸身份证比对功能
You might like
PHP 处理图片的类实现代码
2009/10/23 PHP
PHP大批量数据操作时临时调整内存与执行时间的方法
2011/04/20 PHP
PHP spl_autoload_register实现自动加载研究
2011/12/06 PHP
PHP中使用php5-ffmpeg撷取视频图片实例
2015/01/07 PHP
使用ExtJS技术实现的拖动树结点
2010/08/05 Javascript
jquery判断字符输入个数(数字英文长度记为1,中文记为2,超过长度自动截取)
2010/10/15 Javascript
jquery中加载图片自适应大小主要实现代码
2013/08/23 Javascript
js获取会话框prompt的返回值的方法
2015/01/10 Javascript
js判断手机端(Android手机还是iPhone手机)
2015/07/22 Javascript
浅谈JavaScript的内置对象和浏览器对象
2016/06/03 Javascript
浅谈sass在vue注意的地方
2017/08/10 Javascript
深入浅析angular和vue还有jquery的区别
2018/08/13 jQuery
解决使用bootstrap的dropdown部件时报错:error:Bootstrap dropdown require Popper.js问题
2018/08/30 Javascript
解决小程序无法触发SESSION问题
2020/02/03 Javascript
《javascript设计模式》学习笔记三:Javascript面向对象程序设计单例模式原理与实现方法分析
2020/04/07 Javascript
Python中subprocess的简单使用示例
2015/07/28 Python
python环形单链表的约瑟夫问题详解
2018/09/27 Python
Python打开文件,将list、numpy数组内容写入txt文件中的方法
2018/10/26 Python
python使用matplotlib绘制热图
2018/11/07 Python
python 对多个csv文件分别进行处理的方法
2019/01/07 Python
Python判断telnet通不通的实例
2019/01/26 Python
opencv python图像梯度实例详解
2020/02/04 Python
Spark处理数据排序问题如何避免OOM
2020/05/21 Python
在keras里面实现计算f1-score的代码
2020/06/15 Python
tensorflow 大于某个值为1,小于为0的实例
2020/06/30 Python
英国领先的运动物理治疗供应公司:Vivomed
2018/07/14 全球购物
Priority Pass机场贵宾室会籍计划:全球超过1200间机场贵宾室
2018/08/26 全球购物
Baby Tulai澳大利亚:美国婴儿背带品牌
2018/10/15 全球购物
亚洲领先的设计购物网站:Pinkoi
2020/11/26 全球购物
高三学生评语大全
2014/04/25 职场文书
关于雷锋的演讲稿
2014/05/10 职场文书
公司给客户的感谢信
2015/01/23 职场文书
就业推荐表自我评价范文
2015/03/02 职场文书
合同审查法律意见书
2015/06/04 职场文书
2015大学生暑假调查报告
2015/07/13 职场文书
三种方式清除vue路由跳转router-link的历史记录
2022/04/10 Vue.js