Python中使用Opencv开发停车位计数器功能


Posted in Python onApril 04, 2022

在这个项目中,我们将创建一个停车位计数器。我们会发现总共有多少辆车,以及有多少停车位是空的。关于本教程最好的一点是,我们将使用基本的图像处理技术来解决这个问题,没有使用机器学习、深度学习进行训练来识别。

1. 环境安装

1.1 安装并激活虚拟环境

python -m venv venv
cd venv\Scripts
.\activate.bat

1.2 python包安装

pip install opencv-python

2. 绘制停车位矩形框

2.1 导入停车场图片

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.imshow("image",img)

Python中使用Opencv开发停车位计数器功能

2.2 绘制矩形框 定位停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
cv2.rectangle(img,(50,192),(157,240),(255,0,255),2)  #坐标位置可以多次尝试确定
cv2.imshow("image",img)
cv2.waitKey(0)

Python中使用Opencv开发停车位计数器功能

可以看出,每个停车位的估计宽、高为:

width=107  # 157-102
height = 48 # 240 - 192

2.3 鼠标添加、删除停车位

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
while True:
	img = cv2.imread("carParkImg.png")
	cv2.imshow("images",img)
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("images",mouseClick)
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

Python中使用Opencv开发停车位计数器功能

通过鼠标点击在任何位置添加矩形框,但当矩形框位置出错时,无法进行删除。因此通过添加鼠标右键的事件,删除错误的矩形框。

def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)

通过pickle.dump()保持保存鼠标点击的位置信息。

with open('CarParkPos','wb') as f:
	pickle.dump(posList,f)

通过pickle.load()加载保存好的位置信息,即在原有的停车位添加或删除停车位,而不是每一帧画面重新绘制。

with open('CarParkPos','wb') as f:
	posList = pickle.load(f)

完整代码如下:

import cv2
import pickle
img=cv2.imread('carParkImg.png')
width,height = 107,48
try:
	with open('CarParkPos','rb') as f:
		posList = pickle.load(f)
except:
	posList = []
# posList = []   # 鼠标点击的坐标集合
def mouseClick(events,x,y,flags,params):
	if events == cv2.EVENT_LBUTTONDOWN:
		posList.append((x,y))
	
	if events == cv2.EVENT_RBUTTONDOWN:
		for i,pos in enumerate(posList):
			x1,y1=pos
		if x1 < x < x1 +width and y1 < y <y1 +height:
			posList.pop(i)
	
	with open('CarParkPos','wb') as f:
		pickle.dump(posList,f)
while True:
	img = cv2.imread("carParkImg.png")
	for pos in posList:
		cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)  #坐标位置可以多次尝试确定
	cv2.imshow("image",img)
	cv2.setMouseCallback("image",mouseClick)
	
	if cv2.waitKey(10) & 0xFF== ord('q'):
		break

3. 停车位视频分析

3. 1 停车监控视频

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
while True:
    success,img= cap.read()
    cv2.imshow("Image",img)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

视频时间比较短,为了让视频循环播放,添加如下代码:

if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
	cap.set(cv2.CAP_PROP_POS_FRAMES,0)
  • cv2.CAP_PROP_POS_FRAMES :视频播放当前帧
  • cv2.CAP_PROP_FRAME_COUNT :视频总帧数

即:当前视频播放到结尾时,重新播放

3. 2 截取停车位

截取停车位,回来对每个停车位进行图像处理,从而分析该停车位是否被占用

def checkParkingSpace():
    for pos in posList:
        x,y = pos
        imgCrop=img[y:y+height,x:x+width]
        cv2.imshow(str(x*y),imgCrop)

Python中使用Opencv开发停车位计数器功能

3. 3 图像处理

对图像二值化、高斯模糊处理

imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)

Python中使用Opencv开发停车位计数器功能

利用自适应二值化对图像进行处理

imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)

cv2.adaptiveThreshold 参数的选择可以通过TrackBar拖到滚动条,直到选择合适的数值。

Python中使用Opencv开发停车位计数器功能

可以看出停车位上有车辆时白色像素点比较多,停车位没有车辆时,白色像素点很少甚至没有,因此我们可以基于白色像素点数量来确定该车为是否被占用。同时可以看到当停车位为空时存在一些椒盐噪声,通过medianBlur来处理椒盐噪声

imgMedian = cv2.medianBlur(imgThreshold,5)

Python中使用Opencv开发停车位计数器功能

可以看出椒盐噪声少了一部分。
使用dilate(膨胀)增强白色像素值,便于更好区分每个停车位是否被占用

kernel=np.ones((3,3),np.uint8);
 imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)

Python中使用Opencv开发停车位计数器功能

可以看出白色的轮廓比之前加厚了

3. 4 判断停车位是否被占用

截取每个停车位,经过处理后的图像,统计白色像素的数量
修改checkParkingSpace函数,将处理好的图像传入函数

def checkParkingSpace(imgProc):
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        cvzone.putTextRect(img,str(count),(x,y+height-3,scale =1.5,thickness=2,offset=0)

Python中使用Opencv开发停车位计数器功能

对比可以看出,占有车位的数值比较大1000-2000,空车位的200-500,数值的差距比较大。

画出所有停车位,对比找出合适的阈值,区分停车位为空还是被占用了。

Python中使用Opencv开发停车位计数器功能

可以看出停车位为空时,值为0-600,而停车位被占用,值为:960-2300,因此我们设定阈值为750。所以低于750此时停车位没有车,高于950则停车位有车。

Python中使用Opencv开发停车位计数器功能

加上文字描述

代码

import cv2
import pickle
import cvzone
import numpy as np
# Video feed
cap = cv2.VideoCapture('carPark.mp4')
with open('CarParkPos','rb') as f:
    posList = pickle.load(f)
width,height=107,48
def checkParkingSpace(imgProc):
    spaceCounter=0
    for pos in posList:
        x,y = pos  
        imgCrop=imgProc[y:y+height,x:x+width]
        count=cv2.countNonZero(imgCrop)
        
        if count < 950:
            color = (0,255,0)
            thickness = 5
            spaceCounter +=1
        else:
            color = (0,0,255)
            thickness = 2
        cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),color,thickness=thickness)
        cvzone.putTextRect(img,str(count),(x,y+height-5),scale =1.5,thickness=2,offset=0,colorR=color)
    cvzone.putTextRect(img,f'Free{spaceCounter}/{len(posList)}',(100,50),scale =3,thickness=5,offset=20,colorR=(0,200,0))
            
while True:
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
        cap.set(cv2.CAP_PROP_POS_FRAMES,0)
    
    success,img= cap.read()  
    imgGray =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    imgBlur =cv2.GaussianBlur(imgGray,(3,3),1)  
    imgThreshold=cv2.adaptiveThreshold(imgBlur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,25,16)
    imgMedian = cv2.medianBlur(imgThreshold,5)
    kernel=np.ones((3,3),np.uint8);
    imgDilate=cv2.dilate(imgMedian,kernel,iterations=1)
    checkParkingSpace(imgDilate)
    # for pos in posList:
    #     cv2.rectangle(img,pos,(pos[0]+width,pos[1]+height),(255,0,255),2)
    cv2.imshow("Image",img)
    # cv2.imshow("imgBlur",imgBlur)
    # cv2.imshow("imgThreshold",imgThreshold)
    # cv2.imshow("imgMedian",imgMedian)
    # cv2.imshow("imgDilate",imgDilate)
    if cv2.waitKey(10) & 0xFF== ord('q'):
        break

最终效果如下:

Python中使用Opencv开发停车位计数器功能

源码链接:https://github.com/yuanxinshui/Opencv-project/tree/main/39%20Parking%20Space%20Counter

到此这篇关于Python中使用Opencv开发停车位计数器的文章就介绍到这了,更多相关python Opencv停车位计数器内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中文乱码的解决方法
Nov 04 Python
python遍历 truple list dictionary的几种方法总结
Sep 11 Python
Django应用程序中如何发送电子邮件详解
Feb 04 Python
详解Python中的动态属性和特性
Apr 07 Python
python print输出延时,让其立刻输出的方法
Jan 07 Python
对Python中创建进程的两种方式以及进程池详解
Jan 14 Python
python使用selenium实现批量文件下载
Mar 11 Python
python内存动态分配过程详解
Jul 15 Python
Python底层封装实现方法详解
Jan 22 Python
Python 基于jwt实现认证机制流程解析
Jun 22 Python
Python生成器generator原理及用法解析
Jul 20 Python
Python plt 利用subplot 实现在一张画布同时画多张图
Feb 26 Python
Python采集股票数据并制作可视化柱状图
python疲劳驾驶困倦低头检测功能的实现
Python实现自动玩连连看的脚本分享
Apr 04 #Python
Python利用Turtle绘制哆啦A梦和小猪佩奇
Python必备技巧之函数的使用详解
Python批量解压&压缩文件夹的示例代码
Apr 04 #Python
Python调用腾讯API实现人脸身份证比对功能
You might like
PHP array_multisort() 函数的深入解析
2013/06/20 PHP
laravel5.1框架基础之Blade模板继承简单使用方法分析
2019/09/05 PHP
JavaScript中获取元素索引的函数
2010/09/10 Javascript
映彩衣的js随笔(js图片切换效果)
2011/07/31 Javascript
jQueryMobile之Helloworld与页面切换的方法
2015/02/04 Javascript
JS获取图片高度宽度的方法分享
2015/04/17 Javascript
canvas学习之API整理笔记(二)
2016/12/29 Javascript
jquery中$.fn和图片滚动效果实现的必备知识总结
2017/04/21 jQuery
Angular2使用Guard和Resolve进行验证和权限控制
2017/04/24 Javascript
手把手教你用Node.js爬虫爬取网站数据的方法
2018/07/05 Javascript
vue鼠标移入添加class样式,鼠标移出去除样式(active)实现方法
2018/08/22 Javascript
angular 未登录状态拦截路由跳转的方法
2018/10/09 Javascript
angular2 NgModel模块的具体使用方法
2019/04/10 Javascript
Webpack按需加载打包chunk命名的方法
2019/09/22 Javascript
[00:34]TI7不朽珍藏III——纯金地穴编织者饰品展示
2017/07/15 DOTA
python中sys.argv参数用法实例分析
2015/05/20 Python
搭建Python的Django框架环境并建立和运行第一个App的教程
2016/07/02 Python
Python常见加密模块用法分析【MD5,sha,crypt模块】
2017/05/24 Python
Python 删除连续出现的指定字符的实例
2018/06/29 Python
Python基于多线程实现ping扫描功能示例
2018/07/23 Python
python/sympy求解矩阵方程的方法
2018/11/08 Python
Python实现元素等待代码实例
2019/11/11 Python
python实现批量转换图片为黑白
2020/06/16 Python
tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this T
2020/06/22 Python
django模型类中,null=True,blank=True用法说明
2020/07/09 Python
CSS3 border-radius圆角的实现方法及用法详解
2020/09/14 HTML / CSS
GLAMGLOW格莱魅美国官网:美国知名的面膜品牌
2016/12/31 全球购物
大学生学习2014年全国两会心得体会
2014/03/12 职场文书
租房协议书范本
2014/04/09 职场文书
求职意向书
2014/07/29 职场文书
“四风”问题自我剖析材料思想汇报
2014/09/23 职场文书
2014年班组建设工作总结
2014/12/01 职场文书
上课说话检讨书
2015/01/27 职场文书
2015年度个人教学工作总结
2015/05/20 职场文书
张丽莉事迹观后感
2015/06/16 职场文书
pandas取dataframe特定行列的实现方法
2021/05/24 Python