pytorch Dataset,DataLoader产生自定义的训练数据案例


Posted in Python onMarch 03, 2021

1. torch.utils.data.Dataset

datasets这是一个pytorch定义的dataset的源码集合。下面是一个自定义Datasets的基本框架,初始化放在__init__()中,其中__getitem__()和__len__()两个方法是必须重写的。

__getitem__()返回训练数据,如图片和label,而__len__()返回数据长度。

class CustomDataset(data.Dataset):#需要继承data.Dataset
 def __init__(self):
  # TODO
  # 1. Initialize file path or list of file names.
  pass
 def __getitem__(self, index):
  # TODO
  # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
  # 2. Preprocess the data (e.g. torchvision.Transform).
  # 3. Return a data pair (e.g. image and label).
  #这里需要注意的是,第一步:read one data,是一个data
  pass
 def __len__(self):
  # You should change 0 to the total size of your dataset.
  return 0

2. torch.utils.data.DataLoader

DataLoader(object)可用参数:

dataset(Dataset) 传入的数据集

batch_size(int, optional)每个batch有多少个样本

shuffle(bool, optional)在每个epoch开始的时候,对数据进行重新排序

sampler(Sampler, optional) 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False

batch_sampler(Sampler, optional) 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)

num_workers (int, optional) 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)

collate_fn (callable, optional) 将一个list的sample组成一个mini-batch的函数

pin_memory (bool, optional) 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.

drop_last (bool, optional) 如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

timeout(numeric, optional) 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0

worker_init_fn (callable, optional) 每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)

3. 使用Dataset, DataLoader产生自定义训练数据

假设TXT文件保存了数据的图片和label,格式如下:第一列是图片的名字,第二列是label

0.jpg 0
1.jpg 1
2.jpg 2
3.jpg 3
4.jpg 4
5.jpg 5
6.jpg 6
7.jpg 7
8.jpg 8
9.jpg 9

也可以是多标签的数据,如:

0.jpg 0 10
1.jpg 1 11
2.jpg 2 12
3.jpg 3 13
4.jpg 4 14
5.jpg 5 15
6.jpg 6 16
7.jpg 7 17
8.jpg 8 18
9.jpg 9 19

图库十张原始图片放在./dataset/images目录下,然后我们就可以自定义一个Dataset解析这些数据并读取图片,再使用DataLoader类产生batch的训练数据

3.1 自定义Dataset

首先先自定义一个TorchDataset类,用于读取图片数据,产生标签:

注意初始化函数:

import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import numpy as np
from utils import image_processing
import os
 
class TorchDataset(Dataset):
 def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1):
  '''
  :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id
  :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径
  :param resize_height 为None时,不进行缩放
  :param resize_width 为None时,不进行缩放,
        PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放
  :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize
  '''
  self.image_label_list = self.read_file(filename)
  self.image_dir = image_dir
  self.len = len(self.image_label_list)
  self.repeat = repeat
  self.resize_height = resize_height
  self.resize_width = resize_width
 
  # 相关预处理的初始化
  '''class torchvision.transforms.ToTensor'''
  # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据
  # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。
  self.toTensor = transforms.ToTensor()
 
  '''class torchvision.transforms.Normalize(mean, std)
  此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B),
  用公式channel = (channel - mean) / std进行规范化。
  '''
  # self.normalize=transforms.Normalize()
 
 def __getitem__(self, i):
  index = i % self.len
  # print("i={},index={}".format(i, index))
  image_name, label = self.image_label_list[index]
  image_path = os.path.join(self.image_dir, image_name)
  img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False)
  img = self.data_preproccess(img)
  label=np.array(label)
  return img, label
 
 def __len__(self):
  if self.repeat == None:
   data_len = 10000000
  else:
   data_len = len(self.image_label_list) * self.repeat
  return data_len
 
 def read_file(self, filename):
  image_label_list = []
  with open(filename, 'r') as f:
   lines = f.readlines()
   for line in lines:
    # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
    content = line.rstrip().split(' ')
    name = content[0]
    labels = []
    for value in content[1:]:
     labels.append(int(value))
    image_label_list.append((name, labels))
  return image_label_list
 
 def load_data(self, path, resize_height, resize_width, normalization):
  '''
  加载数据
  :param path:
  :param resize_height:
  :param resize_width:
  :param normalization: 是否归一化
  :return:
  '''
  image = image_processing.read_image(path, resize_height, resize_width, normalization)
  return image
 
 def data_preproccess(self, data):
  '''
  数据预处理
  :param data:
  :return:
  '''
  data = self.toTensor(data)
  return data

3.2 DataLoader产生批训练数据

if __name__=='__main__':
 train_filename="../dataset/train.txt"
 # test_filename="../dataset/test.txt"
 image_dir='../dataset/images'
 
 epoch_num=2 #总样本循环次数
 batch_size=7 #训练时的一组数据的大小
 train_data_nums=10
 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数
 
 train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1)
 # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1)
 train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
 # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False)
 
 # [1]使用epoch方法迭代,TorchDataset的参数repeat=1
 for epoch in range(epoch_num):
  for batch_image, batch_label in train_loader:
   image=batch_image[0,:]
   image=image.numpy()#image=np.array(image)
   image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
   image_processing.cv_show_image("image",image)
   print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
   # batch_x, batch_y = Variable(batch_x), Variable(batch_y)

上面的迭代代码是通过两个for实现,其中参数epoch_num表示总样本循环次数,比如epoch_num=2,那就是所有样本循环迭代2次。

但这会出现一个问题,当样本总数train_data_nums与batch_size不能整取时,最后一个batch会少于规定batch_size的大小,比如这里样本总数train_data_nums=10,batch_size=7,第一次迭代会产生7个样本,第二次迭代会因为样本不足,只能产生3个样本。

我们希望,每次迭代都会产生相同大小的batch数据,因此可以如下迭代:注意本人在构造TorchDataset类时,就已经考虑循环迭代的方法,因此,你现在只需修改repeat为None时,就表示无限循环了,调用方法如下:

'''
 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定
 '''
 train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None)
 train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
 # [2]第2种迭代方法
 for step, (batch_image, batch_label) in enumerate(train_loader):
  image=batch_image[0,:]
  image=image.numpy()#image=np.array(image)
  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
  image_processing.cv_show_image("image",image)
  print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label))
  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
  if step>=max_iterate:
   break
 # [3]第3种迭代方法
 # for step in range(max_iterate):
 #  batch_image, batch_label=train_loader.__iter__().__next__()
 #  image=batch_image[0,:]
 #  image=image.numpy()#image=np.array(image)
 #  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
 #  image_processing.cv_show_image("image",image)
 #  print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
 #  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)

3.3 附件:image_processing.py

上面代码,用到image_processing,这是本人封装好的图像处理包,包含读取图片,画图等基本方法:

# -*-coding: utf-8 -*-
"""
 @Project: IntelligentManufacture
 @File : image_processing.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2019-02-14 15:34:50
"""
 
import os
import glob
import cv2
import numpy as np
import matplotlib.pyplot as plt
 
def show_image(title, image):
 '''
 调用matplotlib显示RGB图片
 :param title: 图像标题
 :param image: 图像的数据
 :return:
 '''
 # plt.figure("show_image")
 # print(image.dtype)
 plt.imshow(image)
 plt.axis('on') # 关掉坐标轴为 off
 plt.title(title) # 图像题目
 plt.show()
 
def cv_show_image(title, image):
 '''
 调用OpenCV显示RGB图片
 :param title: 图像标题
 :param image: 输入RGB图像
 :return:
 '''
 channels=image.shape[-1]
 if channels==3:
  image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # 将BGR转为RGB
 cv2.imshow(title,image)
 cv2.waitKey(0)
 
def read_image(filename, resize_height=None, resize_width=None, normalization=False):
 '''
 读取图片数据,默认返回的是uint8,[0,255]
 :param filename:
 :param resize_height:
 :param resize_width:
 :param normalization:是否归一化到[0.,1.0]
 :return: 返回的RGB图片数据
 '''
 
 bgr_image = cv2.imread(filename)
 # bgr_image = cv2.imread(filename,cv2.IMREAD_IGNORE_ORIENTATION|cv2.IMREAD_COLOR)
 if bgr_image is None:
  print("Warning:不存在:{}", filename)
  return None
 if len(bgr_image.shape) == 2: # 若是灰度图则转为三通道
  print("Warning:gray image", filename)
  bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)
 
 rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB
 # show_image(filename,rgb_image)
 # rgb_image=Image.open(filename)
 rgb_image = resize_image(rgb_image,resize_height,resize_width)
 rgb_image = np.asanyarray(rgb_image)
 if normalization:
  # 不能写成:rgb_image=rgb_image/255
  rgb_image = rgb_image / 255.0
 # show_image("src resize image",image)
 return rgb_image
 
def fast_read_image_roi(filename, orig_rect, ImreadModes=cv2.IMREAD_COLOR, normalization=False):
 '''
 快速读取图片的方法
 :param filename: 图片路径
 :param orig_rect:原始图片的感兴趣区域rect
 :param ImreadModes: IMREAD_UNCHANGED
      IMREAD_GRAYSCALE
      IMREAD_COLOR
      IMREAD_ANYDEPTH
      IMREAD_ANYCOLOR
      IMREAD_LOAD_GDAL
      IMREAD_REDUCED_GRAYSCALE_2
      IMREAD_REDUCED_COLOR_2
      IMREAD_REDUCED_GRAYSCALE_4
      IMREAD_REDUCED_COLOR_4
      IMREAD_REDUCED_GRAYSCALE_8
      IMREAD_REDUCED_COLOR_8
      IMREAD_IGNORE_ORIENTATION
 :param normalization: 是否归一化
 :return: 返回感兴趣区域ROI
 '''
 # 当采用IMREAD_REDUCED模式时,对应rect也需要缩放
 scale=1
 if ImreadModes == cv2.IMREAD_REDUCED_COLOR_2 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_2:
  scale=1/2
 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_4 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_4:
  scale=1/4
 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_8 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_8:
  scale=1/8
 rect = np.array(orig_rect)*scale
 rect = rect.astype(int).tolist()
 bgr_image = cv2.imread(filename,flags=ImreadModes)
 
 if bgr_image is None:
  print("Warning:不存在:{}", filename)
  return None
 if len(bgr_image.shape) == 3: #
  rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB
 else:
  rgb_image=bgr_image #若是灰度图
 rgb_image = np.asanyarray(rgb_image)
 if normalization:
  # 不能写成:rgb_image=rgb_image/255
  rgb_image = rgb_image / 255.0
 roi_image=get_rect_image(rgb_image , rect)
 # show_image_rect("src resize image",rgb_image,rect)
 # cv_show_image("reROI",roi_image)
 return roi_image
 
def resize_image(image,resize_height, resize_width):
 '''
 :param image:
 :param resize_height:
 :param resize_width:
 :return:
 '''
 image_shape=np.shape(image)
 height=image_shape[0]
 width=image_shape[1]
 if (resize_height is None) and (resize_width is None):#错误写法:resize_height and resize_width is None
  return image
 if resize_height is None:
  resize_height=int(height*resize_width/width)
 elif resize_width is None:
  resize_width=int(width*resize_height/height)
 image = cv2.resize(image, dsize=(resize_width, resize_height))
 return image
def scale_image(image,scale):
 '''
 :param image:
 :param scale: (scale_w,scale_h)
 :return:
 '''
 image = cv2.resize(image,dsize=None, fx=scale[0],fy=scale[1])
 return image
 
def get_rect_image(image,rect):
 '''
 :param image:
 :param rect: [x,y,w,h]
 :return:
 '''
 x, y, w, h=rect
 cut_img = image[y:(y+ h),x:(x+w)]
 return cut_img
def scale_rect(orig_rect,orig_shape,dest_shape):
 '''
 对图像进行缩放时,对应的rectangle也要进行缩放
 :param orig_rect: 原始图像的rect=[x,y,w,h]
 :param orig_shape: 原始图像的维度shape=[h,w]
 :param dest_shape: 缩放后图像的维度shape=[h,w]
 :return: 经过缩放后的rectangle
 '''
 new_x=int(orig_rect[0]*dest_shape[1]/orig_shape[1])
 new_y=int(orig_rect[1]*dest_shape[0]/orig_shape[0])
 new_w=int(orig_rect[2]*dest_shape[1]/orig_shape[1])
 new_h=int(orig_rect[3]*dest_shape[0]/orig_shape[0])
 dest_rect=[new_x,new_y,new_w,new_h]
 return dest_rect
 
def show_image_rect(win_name,image,rect):
 '''
 :param win_name:
 :param image:
 :param rect:
 :return:
 '''
 x, y, w, h=rect
 point1=(x,y)
 point2=(x+w,y+h)
 cv2.rectangle(image, point1, point2, (0, 0, 255), thickness=2)
 cv_show_image(win_name, image)
 
def rgb_to_gray(image):
 image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
 return image
 
def save_image(image_path, rgb_image,toUINT8=True):
 if toUINT8:
  rgb_image = np.asanyarray(rgb_image * 255, dtype=np.uint8)
 if len(rgb_image.shape) == 2: # 若是灰度图则转为三通道
  bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_GRAY2BGR)
 else:
  bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
 cv2.imwrite(image_path, bgr_image)
 
def combime_save_image(orig_image, dest_image, out_dir,name,prefix):
 '''
 命名标准:out_dir/name_prefix.jpg
 :param orig_image:
 :param dest_image:
 :param image_path:
 :param out_dir:
 :param prefix:
 :return:
 '''
 dest_path = os.path.join(out_dir, name + "_"+prefix+".jpg")
 save_image(dest_path, dest_image)
 
 dest_image = np.hstack((orig_image, dest_image))
 save_image(os.path.join(out_dir, "{}_src_{}.jpg".format(name,prefix)), dest_image)

3.4 完整的代码

# -*-coding: utf-8 -*-
"""
 @Project: pytorch-learning-tutorials
 @File : dataset.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2019-03-07 18:45:06
"""
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import numpy as np
from utils import image_processing
import os
 
class TorchDataset(Dataset):
 def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1):
  '''
  :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id
  :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径
  :param resize_height 为None时,不进行缩放
  :param resize_width 为None时,不进行缩放,
        PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放
  :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize
  '''
  self.image_label_list = self.read_file(filename)
  self.image_dir = image_dir
  self.len = len(self.image_label_list)
  self.repeat = repeat
  self.resize_height = resize_height
  self.resize_width = resize_width
 
  # 相关预处理的初始化
  '''class torchvision.transforms.ToTensor'''
  # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据
  # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。
  self.toTensor = transforms.ToTensor()
 
  '''class torchvision.transforms.Normalize(mean, std)
  此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B),
  用公式channel = (channel - mean) / std进行规范化。
  '''
  # self.normalize=transforms.Normalize()
 
 def __getitem__(self, i):
  index = i % self.len
  # print("i={},index={}".format(i, index))
  image_name, label = self.image_label_list[index]
  image_path = os.path.join(self.image_dir, image_name)
  img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False)
  img = self.data_preproccess(img)
  label=np.array(label)
  return img, label
 
 def __len__(self):
  if self.repeat == None:
   data_len = 10000000
  else:
   data_len = len(self.image_label_list) * self.repeat
  return data_len
 
 def read_file(self, filename):
  image_label_list = []
  with open(filename, 'r') as f:
   lines = f.readlines()
   for line in lines:
    # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
    content = line.rstrip().split(' ')
    name = content[0]
    labels = []
    for value in content[1:]:
     labels.append(int(value))
    image_label_list.append((name, labels))
  return image_label_list
 
 def load_data(self, path, resize_height, resize_width, normalization):
  '''
  加载数据
  :param path:
  :param resize_height:
  :param resize_width:
  :param normalization: 是否归一化
  :return:
  '''
  image = image_processing.read_image(path, resize_height, resize_width, normalization)
  return image
 
 def data_preproccess(self, data):
  '''
  数据预处理
  :param data:
  :return:
  '''
  data = self.toTensor(data)
  return data
 
if __name__=='__main__':
 train_filename="../dataset/train.txt"
 # test_filename="../dataset/test.txt"
 image_dir='../dataset/images'
 
 epoch_num=2 #总样本循环次数
 batch_size=7 #训练时的一组数据的大小
 train_data_nums=10
 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数
 
 train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1)
 # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1)
 train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
 # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False)
 
 # [1]使用epoch方法迭代,TorchDataset的参数repeat=1
 for epoch in range(epoch_num):
  for batch_image, batch_label in train_loader:
   image=batch_image[0,:]
   image=image.numpy()#image=np.array(image)
   image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
   image_processing.cv_show_image("image",image)
   print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
   # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
 
 '''
 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定
 '''
 train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None)
 train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
 # [2]第2种迭代方法
 for step, (batch_image, batch_label) in enumerate(train_loader):
  image=batch_image[0,:]
  image=image.numpy()#image=np.array(image)
  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
  image_processing.cv_show_image("image",image)
  print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label))
  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
  if step>=max_iterate:
   break
 # [3]第3种迭代方法
 # for step in range(max_iterate):
 #  batch_image, batch_label=train_loader.__iter__().__next__()
 #  image=batch_image[0,:]
 #  image=image.numpy()#image=np.array(image)
 #  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
 #  image_processing.cv_show_image("image",image)
 #  print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
 #  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
Python 中urls.py:URL dispatcher(路由配置文件)详解
Mar 24 Python
利用Python-iGraph如何绘制贴吧/微博的好友关系图详解
Nov 02 Python
使用Py2Exe for Python3创建自己的exe程序示例
Oct 31 Python
在Python中实现shuffle给列表洗牌
Nov 08 Python
Pythony运维入门之Socket网络编程详解
Apr 15 Python
Python Excel处理库openpyxl使用详解
May 09 Python
Python任意字符串转16, 32, 64进制的方法
Jun 12 Python
python django 原生sql 获取数据的例子
Aug 14 Python
解决Python3用PIL的ImageFont输出中文乱码的问题
Aug 22 Python
使用matplotlib绘制图例标签中带有公式的图
Dec 13 Python
python 服务器运行代码报错ModuleNotFoundError的解决办法
Sep 16 Python
用Python进行栅格数据的分区统计和批量提取
May 27 Python
解决pytorch 数据类型报错的问题
Mar 03 #Python
python反编译教程之2048小游戏实例
Mar 03 #Python
python 如何读、写、解析CSV文件
Mar 03 #Python
聊聊python在linux下与windows下导入模块的区别说明
Mar 03 #Python
python 递归相关知识总结
Mar 03 #Python
使用pandas读取表格数据并进行单行数据拼接的详细教程
Mar 03 #Python
用gpu训练好的神经网络,用tensorflow-cpu跑出错的原因及解决方案
Mar 03 #Python
You might like
如何解决PHP无法实现多线程的问题
2015/09/25 PHP
jquery 模拟雅虎首页的点击对话框效果
2010/04/11 Javascript
深入理解JavaScript系列(1) 编写高质量JavaScript代码的基本要点
2012/01/15 Javascript
javascript中基本类型和引用类型的区别分析
2015/05/12 Javascript
JavaScript的RequireJS库入门指南
2015/07/01 Javascript
js点击按钮实现水波纹效果代码(CSS3和Canves)
2016/09/15 Javascript
微信小程序 Page()函数详解
2016/10/17 Javascript
详解基于webpack搭建react运行环境
2017/06/01 Javascript
使用JS实现图片轮播的实例(前后首尾相接)
2017/09/21 Javascript
SVG实现时钟效果
2018/07/17 Javascript
Vue 事件处理操作实例详解
2019/03/05 Javascript
基于vue实现圆形菜单栏组件
2019/07/05 Javascript
微信小程序文字显示换行问题
2019/07/28 Javascript
vuex分模块后,实现获取state的值
2020/07/26 Javascript
Postman内建变量常用方法实例解析
2020/07/28 Javascript
python实现简单socket通信的方法
2016/04/19 Python
Tornado高并发处理方法实例代码
2018/01/15 Python
基于anaconda下强大的conda命令介绍
2018/06/11 Python
python将字典列表导出为Excel文件的方法
2019/09/02 Python
python GUI库图形界面开发之PyQt5树形结构控件QTreeWidget详细使用方法与实例
2020/03/02 Python
PyCharm 解决找不到新打开项目的窗口问题
2021/01/15 Python
英国女士和男士时尚服装网上购物:Top Labels Online
2018/03/25 全球购物
加拿大的标志性百货公司:Hudson’s Bay(哈得逊湾)
2019/09/03 全球购物
C#如何判断当前用户是否输入某个域
2015/12/07 面试题
半年思想汇报
2013/12/30 职场文书
茶叶生产计划书
2014/01/10 职场文书
超市活动计划书
2014/04/24 职场文书
民主评议党员自我评价材料
2014/09/18 职场文书
党员自我评价2015
2015/03/03 职场文书
新娘父亲婚礼致辞
2015/07/27 职场文书
学习焦裕禄先进事迹心得体会
2016/01/23 职场文书
解决MySQL存储时间出现不一致的问题
2021/04/28 MySQL
spring cloud gateway中如何读取请求参数
2021/07/15 Java/Android
oracle连接ODBC sqlserver数据源的详细步骤
2021/07/25 Oracle
画错魏国疆域啦!《派对咖孔明》动画因作画失误于官网致歉
2022/04/07 日漫
零基础学java之带返回值的方法的定义和调用
2022/04/10 Java/Android