Pandas时间序列重采样(resample)方法中closed、label的作用详解


Posted in Python onDecember 10, 2019

Pandas提供了便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:

  • 降采样:时间粒度变大。例如,原来是按天统计的数据,现在变成按周统计。降采样会涉及到数据的聚合,比如天数据变成周数据,那么就得对一周的7天数据聚合,聚合的方式可以是求和,求均值等等。
  • 升采样:时间粒度变小。例如,原来是按周统计的数据,现在变成按天统计。升采样会涉及到数据的填充,根据填充的方法不同填充的数据也就不同。

下面涉及的例子,都需要导入numpy和pandas(如下),并且对于降采样数据的聚合做简单的求和处理。

import numpy as np
import pandas as pd

Pandas重采样方法resample

在Pandas里,通过resample来处理重采样,根据频率的不同(freq)会处理成降采样或者升采样。我们先来看看Resample的定义和关键参数注释:

resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
  Convenience method for frequency conversion and resampling of time
  series. Object must have a datetime-like index (DatetimeIndex,
  PeriodIndex, or TimedeltaIndex), or pass datetime-like values
  to the on or level keyword.
  
Parameters
----------
closed : {'right', 'left'}
    Which side of bin interval is closed. The default is ‘left' for all frequency offsets except for ‘M', ‘A', ‘Q', ‘BM', ‘BA', ‘BQ', and ‘W' which all have a default of ‘right'.
label : {'right', 'left'}
    Which bin edge label to label bucket with. The default is ‘left' for all frequency offsets except for ‘M', ‘A', ‘Q', ‘BM', ‘BA', ‘BQ', and ‘W' which all have a default of ‘right'.

第一眼看closed和label这两个参数,会感觉云里雾里,即使看了例子也可能会觉得莫名奇妙。下面我们通过具体的降采样和升采样例子,来解读一下这个两个参数内含的玄机。

降采样

首先先来创建一个时间序列,起始日期是2018/01/01,一共12天,每天对应的数值分别是1到12:

rng = pd.date_range('20180101', periods=12)
ts = pd.Series(np.arange(1,13), index=rng)

print(ts)

#### Outputs ####
2018-01-01   1
2018-01-02   2
2018-01-03   3
2018-01-04   4
2018-01-05   5
2018-01-06   6
2018-01-07   7
2018-01-08   8
2018-01-09   9
2018-01-10  10
2018-01-11  11
2018-01-12  12
Freq: D, dtype: int32

下面使用resample方法来做降采样处理,频率是5天,上面提到的两个参数,都使用默认值:

ts_5d = ts.resample('5D').sum()
print(ts_5d)

#### Outputs ####
2018-01-01  15
2018-01-06  40
2018-01-11  23
Freq: 5D, dtype: int32

到这里,我相信不论是代码还是代码的结果都很好理解:无非就是每5天来个求和。在第一部分中,我们列出了closed参数的注释,从注释可知,closed默认的值是'left'。那如果把closed的值改为'right',结果有是怎么样的?

ts_5d_rightclosed = ts.resample('5D', closed='right').sum()
print(ts_5d_rightclosed)

#### Outputs ####
2017-12-27   1
2018-01-01  20
2018-01-06  45
2018-01-11  12
Freq: 5D, dtype: int32

怎么会这样?为什么变成了四个区间?closed=right到底做了什么?

别着急,我们来一步一步看看,这其中发生了什么事情。原始的时间序列是从18年1月1号到1月12号,一共12天。以5天为单位降采样处理后,变成了三个5天,分别是:

  • 第一个5天:1-2-3-4-5-6
  • 第二个5天:6-7-8-9-10-11
  • 第三个5天:12-13-14-15-16

实际上,这三个5天就是三个区间了。和数学里区间的概念一样,区间有开和闭的概念。在resample中,区间的开和闭,就是通过closed这个参数来控制。用数学符号表示的话:

closed = 'left' 左闭右开

上面的三个5天可以由以下的三个左闭右开的区间构成:

  • 区间1:[1, 6)
  • 区间2: [6, 11)
  • 区间3:[11, 16) 例子中,时间只到12号为止,但是这里会往后补足5天

现在,在这三个区间上做数据聚合也就很好理解了。对于区间1进行求和,也就是12、13、14、15、16这5天的值求和即可。区间2和区间3也是同理。所以下面的代码就很好理解了:

ts_5d_leftclosed = ts.resample('5D', closed='right').sum()
print(ts_5d_leftclosed)

#### Outputs ####
2018-01-01  15
2018-01-06  40
2018-01-11  23
Freq: 5D, dtype: int32

closed = 'right' 左开右闭

上面的三个5天可以由以下的四个左开右闭的区间构成。注意,由于第一个5天是从1号到6号,但由于是左开区间,1号就落不到1到6号的那个区间,所以要往前补足:

  • 区间1:(27, 1]
  • 区间2:(1, 6]
  • 区间3: (6, 11]
  • 区间4:(11, 16]

现在,在这四个区间上做数据聚合也是一样的道理了:对于区间1,是对28,29,30,31,1这五天的值求和(这里只有1号是有值的),其余的区间也是同理,但需要注意是左开右闭。所以到这里,上面“莫名其妙”的代码和结果就好理解了。复制代码和结果如下:

ts_5d_rightclosed = ts.resample('5D', closed='right').sum()
print(ts_5d_rightclosed)

#### Outputs ####
2017-12-27   1
2018-01-01  20
2018-01-06  45
2018-01-11  12
Freq: 5D, dtype: int32

理解了clsoed的意义以后,再来理解label就so easy了。由注释可知,label的默认值是left。下面在closed='right'的基础上,将label设置为right:

ts_5d_rightclosed_rightlable = ts.resample('5D', closed='right', label='right').sum()
print(ts_5d_rightclosed_rightlable)

#### Outputs ####
2018-01-01   1
2018-01-06  20
2018-01-11  45
2018-01-16  12
Freq: 5D, dtype: int32

于label为left相比,二者结果的异同点如下:

  • 相同点:一样是四个区间,每个区间的聚合的值是一样的
  • 不同点:每个区间的索引不同

不难发现,label为left的时候,就以区间左边的那个日期作为索引;label,就以区间的右边那个日期作为索引。

综上,我们可以总结一下closed和label的用法和意义了:

  • closed:划分区间的依据,left会划成左闭右开区间;right会划分成左开右闭的区间。一般来说,closed为right的时候,区间会比为left的时候多一个。区间划分完毕,聚合运算就在这个区间内执行。
  • label:划分区间完毕,根据label的不同,区间的索引就不同。如果label为left,则区间左边的日期作为索引;如果label为right,则区间右边的日期作为索引。

升采样

创建一个时间序列,起始日期是2018/01/01,一共2天,每天对应的数值分别是1到2:

rng = pd.date_range('20180101', periods=2)
ts = pd.Series(np.arange(1,2), index=rng)

print(ts)

#### Outputs ####
2018-01-01  1
2018-01-02  2
Freq: D, dtype: int32

升采样就不涉及到closed和label的值,也就是会忽略(筒子们可以验证一下),所以我们在使用的时候无需设置这两个值。对于升采样,前面也提到,主要是涉及到值的填充。有下面的四种填充方法(实际是三种):

  • 不填充。那么对应无值的地方,用NaN代替。对应的方法是asfreq。
  • 用前值填充。用前面的值填充无值的地方。对应的方法是ffill或者pad。这里方便记忆,ffill的第一个f是代表forward,向前的意思
  • 用后值填充。对应的方法是bfill,b代表back。

下面是一个例子:

ts_6h_asfreq = ts.resample('6H').asfreq()
print(ts_6h_asfreq)

ts_6h_pad = ts.resample('6H').pad()
print(ts_6h_pad)

ts_6h_ffill = ts.resample('6H').ffill()
print(ts_6h_ffill)

ts_6h_bfill = ts.resample('6H').bfill()
print(ts_6h_bfill)

#### Outputs ####
2018-01-01 00:00:00  1.0
2018-01-01 06:00:00  NaN
2018-01-01 12:00:00  NaN
2018-01-01 18:00:00  NaN
2018-01-02 00:00:00  2.0
Freq: 6H, dtype: float64
2018-01-01 00:00:00  1
2018-01-01 06:00:00  1
2018-01-01 12:00:00  1
2018-01-01 18:00:00  1
2018-01-02 00:00:00  2
Freq: 6H, dtype: int32
2018-01-01 00:00:00  1
2018-01-01 06:00:00  1
2018-01-01 12:00:00  1
2018-01-01 18:00:00  1
2018-01-02 00:00:00  2
Freq: 6H, dtype: int32
2018-01-01 00:00:00  1
2018-01-01 06:00:00  2
2018-01-01 12:00:00  2
2018-01-01 18:00:00  2
2018-01-02 00:00:00  2
Freq: 6H, dtype: int32

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
如何搜索查找并解决Django相关的问题
Jun 30 Python
Python中atexit模块的基本使用示例
Jul 08 Python
在CentOS上配置Nginx+Gunicorn+Python+Flask环境的教程
Jun 07 Python
python matplotlib中文显示参数设置解析
Dec 15 Python
python+django+rest框架配置创建方法
Aug 31 Python
Python 取numpy数组的某几行某几列方法
Oct 24 Python
解决Python3下map函数的显示问题
Dec 04 Python
opencv中图像叠加/图像融合/按位操作的实现
Apr 01 Python
Python接口测试结果集实现封装比较
May 01 Python
Django生成数据库及添加用户报错解决方案
Oct 09 Python
Python调用ffmpeg开源视频处理库,批量处理视频
Nov 16 Python
Python实现简单得递归下降Parser
May 02 Python
Python3的unicode编码转换成中文的问题及解决方案
Dec 10 #Python
用OpenCV将视频分解成单帧图片,图片合成视频示例
Dec 10 #Python
python3 webp转gif格式的实现示例
Dec 10 #Python
Spring Cloud Feign高级应用实例详解
Dec 10 #Python
flask 使用 flask_apscheduler 做定时循环任务的实现
Dec 10 #Python
使用opencv将视频帧转成图片输出
Dec 10 #Python
django框架cookie和session用法实例详解
Dec 10 #Python
You might like
PHP防CC攻击实现代码
2011/12/29 PHP
PHP语言中global和$GLOBALS[]的分析 之二
2012/02/02 PHP
php提交表单发送邮件的方法
2015/03/20 PHP
PHP中md5()函数的用法讲解
2019/03/30 PHP
PHP数组Key强制类型转换实现原理解析
2020/09/01 PHP
javascript编程起步(第三课)
2007/02/27 Javascript
对字符串进行HTML编码和解码的JavaScript函数
2010/02/01 Javascript
jQuery 关于伪类选择符的使用说明
2013/04/24 Javascript
JavaScript中的对象序列化介绍
2014/12/30 Javascript
js实现内容显示并使用json传输数据
2016/03/16 Javascript
jQuery 监控键盘一段时间没输入
2016/04/22 Javascript
AngularJS验证信息框架的封装插件用法【w5cValidator扩展插件】
2016/11/03 Javascript
详解JavaScript的内置对象
2016/12/07 Javascript
bootstrap table之通用方法( 时间控件,导出,动态下拉框, 表单验证 ,选中与获取信息)代码分享
2017/01/24 Javascript
JavaScript实现256色转灰度图
2017/02/22 Javascript
JS简单实现获取元素的封装操作示例
2017/04/07 Javascript
原生js实现淘宝放大镜效果
2020/10/28 Javascript
JS使用canvas中的measureText方法测量字体宽度示例
2019/02/02 Javascript
python 字符串格式化代码
2013/03/17 Python
零基础写python爬虫之HTTP异常处理
2014/11/05 Python
Window10+Python3.5安装opencv的教程推荐
2018/04/02 Python
Python实现多条件筛选目标数据功能【测试可用】
2018/06/13 Python
python中使用while循环的实例
2019/08/05 Python
python基于plotly实现画饼状图代码实例
2019/12/16 Python
css3新增颜色表示方式分享
2014/04/15 HTML / CSS
美国儿童服装、家具和玩具精品店:Maisonette
2019/11/24 全球购物
Kiehl’s科颜氏西班牙官方网站:源自美国的植物护肤品牌
2020/02/22 全球购物
英国领先的餐饮折扣俱乐部:Gourmet Society
2020/07/26 全球购物
优秀求职自荐信怎样写
2013/12/18 职场文书
保护动物倡议书
2014/04/15 职场文书
中级会计大学生职业生涯规划书
2014/09/16 职场文书
放假通知
2015/04/14 职场文书
公司仓库管理制度
2015/08/04 职场文书
会计主管竞聘书
2015/09/15 职场文书
2019优秀干部竞聘演讲稿范文!
2019/07/02 职场文书
叶县这家生产军用电台的兵工厂,人称“四机部”,走出一上将
2022/02/18 无线电