python傅里叶变换FFT绘制频谱图


Posted in Python onJuly 19, 2019

本文实例为大家分享了python傅里叶变换FFT绘制频谱图的具体代码,供大家参考,具体内容如下

频谱图的横轴表示的是 频率, 纵轴表示的是振幅

#coding=gbk
 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
 
#依据快速傅里叶算法得到信号的频域
def test_fft():
 sampling_rate = 8000 #采样率
 fft_size = 8000  #FFT长度
 t = np.arange(0, 1.0, 1.0/sampling_rate)
 x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t)+ 3*np.sin(2*np.pi*200*t)
 xs = x[:fft_size]
 
 xf = np.fft.rfft(xs) / fft_size #返回fft_size/2+1 个频率
 
 freqs = np.linspace(0, sampling_rate/2, fft_size/2+1) #表示频率
 xfp = np.abs(xf) * 2 #代表信号的幅值,即振幅
 
 plt.figure(num='original', figsize=(15, 6))
 plt.plot(x[:100])
 
 plt.figure(figsize=(8,4))
 plt.subplot(211)
 plt.plot(t[:fft_size], xs)
 plt.xlabel(u"时间(秒)", fontproperties='FangSong')
 plt.title(u"156.25Hz和234.375Hz的波形和频谱", fontproperties='FangSong')
 
 plt.subplot(212)
 plt.plot(freqs, xfp)
 plt.xlabel(u"频率(Hz)", fontproperties='FangSong')
 plt.ylabel(u'幅值', fontproperties='FangSong')
 plt.subplots_adjust(hspace=0.4)
 plt.show()
 
test_fft()
# np.clip(a, a_min, a_max, out) 输出与a 的shape一样,大于等于a_min,小于等于a_max的数,即在 [a_min, a_max]之间的数
a = np.arange(10)
print(a)
print(a.shape)
# [0 1 2 3 4 5 6 7 8 9]
b = np.empty((10,))
np.clip(a, 3, 8, out=b)
print(b)
# [3. 3. 3. 3. 4. 5. 6. 7. 8. 8.]
c = np.clip(a, 4, 10)
print(c)
# [4 4 4 4 4 5 6 7 8 9]
#a_min, a_max也可以输入与a 相同shape的数组
d = np.arange(4)
d1 = np.clip(d, [-1, 1, -3, 2], 2)
print(d)
print(d1)
# [0 1 2 3] #原数组
# [0 1 2 2] 
 
print(np.log10(1000))
 
def test_fft():
# FFT变换是针对一组数值进行运算的,这组数的长度N必须是2的整数次幂,例如64, 128, 256等等; 数值可以是实数也可以是复数,
# 通常我们的时域信号都是实数,因此下面都以实数为例。我们可以把这一组实数想像成对某个连续信号按照一定取样周期进行取样而得来,
# 如果对这组N个实数值进行FFT变换,将得到一个有N个复数的数组,我们称此复数数组为频域信号,此复数数组符合如下规律:
# 
# 下标为0和N/2的两个复数的虚数部分为0,
# 下标为i和N-i的两个复数共轭,也就是其虚数部分数值相同、符号相反。
 np.random.seed(66)
 X = np.random.rand(8)
 print(X)
#  [0.15428758 0.13369956 0.36268547 0.67910888 0.19445006 0.25121038
# 0.75841639 0.55761859]
 xf = np.fft.fft(X)
 print(xf)
#  [ 3.0914769 +0.j   -0.20916178+0.39291702j -0.77236422+0.85181752j
#  0.12883683-0.39854483j -0.15179792+0.j   0.12883683+0.39854483j
#  -0.77236422-0.85181752j -0.20916178-0.39291702j]
 #通过快速傅里叶变换的逆变换 ifft 还原成原来的值
 X1 = np.fft.ifft(xf)
 print(X1)
# [0.15428758+0.00000000e+00j 0.13369956-2.00387919e-16j
# 0.36268547+1.66533454e-16j 0.67910888+1.51815661e-16j
# 0.19445006+0.00000000e+00j 0.25121038-1.51815661e-16j
# 0.75841639-1.66533454e-16j 0.55761859+2.00387919e-16j] 
 
# 下面让我们来看看FFT变换之后的那些复数都代表什么意思。
# 
# 首先下标为0的实数表示了时域信号中的直流成分的多少
# 下标为i的复数a+b*j表示时域信号中周期为N/i个取样值的正弦波和余弦波的成分的多少, 其中a表示cos波形的成分,b表示sin波形的成分 
 X = np.ones(8)
 x2 = np.fft.fft(X) / len(X) # 为了计算各个成分的能量多少,需要将FFT的结果除以FFT的长度
 print(x2) 
# [1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
 
 X = np.arange(0, 2*np.pi, 2*np.pi/8)
 y = np.sin(X)
 x3 = np.fft.fft(y) /len(y)
 print(x3)
# [ 1.43029718e-18+0.00000000e+00j -4.44089210e-16-5.00000000e-01j # 只有下标为 1 的复数的虚部为-0.5,
# 1.53080850e-17-1.38777878e-17j 3.87727691e-17-1.11022302e-16j
# 2.91858728e-17+0.00000000e+00j 0.00000000e+00-1.11022302e-16j
# 1.53080850e-17+1.38777878e-17j 3.44084101e-16+5.00000000e-01j] 
 output1 = np.fft.fft(np.cos(X) / len(X)) 
 print(output1) 
# [-4.30636606e-17+0.00000000e+00j 5.00000000e-01-2.66538563e-16j #只有下标为1 的实部为 0.5
# 1.53080850e-17+0.00000000e+00j 5.55111512e-17+1.97149624e-16j
# 1.24474906e-17+0.00000000e+00j -1.11022302e-16+2.05306223e-16j
# 1.53080850e-17+0.00000000e+00j 5.00000000e-01-1.35917284e-16j] 
 
 #综合的例子
 X = np.arange(0, 2*np.pi, 2*np.pi/128)
 y = 0.3*np.cos(X) + 0.5*np.cos(2*X+np.pi/4) + 0.8*np.cos(3*X-np.pi/3)
 yf = np.fft.fft(y) / len(y)
 print(2*np.abs(yf[1]), np.rad2deg(np.angle(yf[1])))
#  0.30000000000000016 3.3130777931911615e-15   #计算出幅值和相位角
 print(2*np.abs(yf[2]), np.rad2deg(np.angle(yf[2])))
#  0.5000000000000002 44.999999999999986
 print(2*np.abs(yf[3]), np.rad2deg(np.angle(yf[3])))
#  0.7999999999999998 -60.00000000000007
 
# 周期为128/1.0点的余弦波的相位为0, 振幅为0.3
# 周期为64/2.0点的余弦波的相位为45度, 振幅为0.5
# 周期为128/3.0点的余弦波的相位为-60度,振幅为0.8
# test_fft()
 
#使用多个正玄波合成三角波
import pylab as pl
# 取FFT计算的结果freqs中的前n项进行合成,返回合成结果,计算loops个周期的波形
def fft_combine(freqs, n, loops=1):
 length = len(freqs) * loops
 data = np.zeros(length)
 index = loops * np.arange(0, length, 1.0) / length * (2 * np.pi)
 for k, p in enumerate(freqs[:n]):
  if k != 0: p *= 2 # 除去直流成分之外,其余的系数都*2
  data += np.real(p) * np.cos(k*index) # 余弦成分的系数为实数部
  data -= np.imag(p) * np.sin(k*index) # 正弦成分的系数为负的虚数部
 return index, data 
 
# 产生size点取样的三角波,其周期为1
def triangle_wave(size):
 x = np.arange(0, 1, 1.0/size)
 y = np.where(x<0.5, x, 0)
 y = np.where(x>=0.5, 1-x, y)
 return x, y
 
def test_show():
 fft_size = 256
 
 # 计算三角波和其FFT
 x, y = triangle_wave(fft_size)
 fy = np.fft.fft(y) / fft_size
 
 # 绘制三角波的FFT的前20项的振幅,由于不含下标为偶数的值均为0, 因此取
 # log之后无穷小,无法绘图,用np.clip函数设置数组值的上下限,保证绘图正确
 pl.figure()
 pl.plot(np.clip(20*np.log10(np.abs(fy[:20])), -120, 120), "o")
 pl.xlabel("frequency bin")
 pl.ylabel("power(dB)")
 pl.title("FFT result of triangle wave")
 
 # 绘制原始的三角波和用正弦波逐级合成的结果,使用取样点为x轴坐标
 pl.figure()
 pl.plot(y, label="original triangle", linewidth=2)
 for i in [0,1,3,5,7,9]:
  index, data = fft_combine(fy, i+1, 2) # 计算两个周期的合成波形
  pl.plot(data, label = "N=%s" % i)
 pl.legend()
 pl.title("partial Fourier series of triangle wave")
 pl.show()
 
# test_show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python ORM框架SQLAlchemy学习笔记之安装和简单查询实例
Jun 10 Python
Python中os.path用法分析
Jan 15 Python
python logging 日志轮转文件不删除问题的解决方法
Aug 02 Python
python学生信息管理系统
Mar 13 Python
Python画柱状统计图操作示例【基于matplotlib库】
Jul 04 Python
python实现飞机大战
Sep 11 Python
一百行python代码将图片转成字符画
Feb 19 Python
Django之模型层多表操作的实现
Jan 08 Python
Python实现定期检查源目录与备份目录的差异并进行备份功能示例
Feb 27 Python
Django如何防止定时任务并发浅析
May 14 Python
python web框架 django wsgi原理解析
Aug 20 Python
Python 如何将integer转化为罗马数(3999以内)
Jun 05 Python
Django forms表单 select下拉框的传值实例
Jul 19 #Python
Django组件content-type使用方法详解
Jul 19 #Python
django多个APP的urls设置方法(views重复问题解决)
Jul 19 #Python
django admin组件使用方法详解
Jul 19 #Python
使用python分析统计自己微信朋友的信息
Jul 19 #Python
django url到views参数传递的实例
Jul 19 #Python
Django  ORM 练习题及答案
Jul 19 #Python
You might like
基于initPHP的框架介绍
2013/04/18 PHP
php中get_headers函数的作用及用法的详细介绍
2013/04/27 PHP
php准确获取文件MIME类型的方法
2015/06/17 PHP
隐藏Nginx或Apache以及PHP的版本号的方法
2016/01/03 PHP
用PHP的socket实现客户端到服务端的通信实例详解
2017/02/04 PHP
php 使用curl模拟ip和来源进行访问的实现方法
2017/05/02 PHP
apache集成php7.3.5的详细步骤
2019/06/20 PHP
Js获取事件对象代码
2010/08/05 Javascript
jquery select 设置默认选中的示例代码
2014/02/07 Javascript
将字符串中由空格隔开的每个单词首字母大写
2014/04/06 Javascript
自制的文件上传JS控件可支持IE、chrome、firefox etc
2014/04/18 Javascript
javascript实现控制文字大中小显示
2015/04/28 Javascript
jQuery 1.9.1源码分析系列(十)事件系统之绑定事件
2015/11/19 Javascript
Angular2 PrimeNG分页模块学习
2017/01/14 Javascript
客户端(vue框架)与服务器(koa框架)通信及服务器跨域配置详解
2017/08/26 Javascript
使用微信SDK自定义分享的方法
2019/07/03 Javascript
[06:53]2018DOTA2国际邀请赛寻真——勇于创新的Vici Gaming
2018/08/14 DOTA
利用打码兔和超人打码自封装的打码类分享
2014/03/16 Python
python使用PyGame模块播放声音的方法
2015/05/20 Python
Python3.5 Pandas模块之Series用法实例分析
2019/04/23 Python
Python 20行简单实现有道在线翻译的详解
2019/05/15 Python
使用PyInstaller将Pygame库编写的小游戏程序打包为exe文件及出现问题解决方法
2019/09/06 Python
pycharm第三方库安装失败的问题及解决经验分享
2020/05/09 Python
Omio中国:全欧洲低价大巴、火车和航班搜索和比价
2018/08/09 全球购物
酒店总经理工作职责
2013/12/13 职场文书
小学生红领巾广播稿
2014/01/21 职场文书
上班看电影检讨书
2014/02/12 职场文书
《菜园里》教学反思
2014/04/17 职场文书
企业标语大全
2014/07/01 职场文书
员工辞职信范文大全
2015/05/12 职场文书
走进科学观后感
2015/06/18 职场文书
小学班主任研修日志
2015/11/13 职场文书
MySQL 使用事件(Events)完成计划任务
2021/05/24 MySQL
一小时学会TensorFlow2之基本操作2实例代码
2021/09/04 Python
Redis唯一ID生成器的实现
2022/07/07 Redis
服务器nginx权限被拒绝解决案例
2022/09/23 Servers