Python Numpy计算各类距离的方法


Posted in Python onJuly 05, 2019

详细:

1.闵可夫斯基距离(Minkowski Distance)

2.欧氏距离(Euclidean Distance)

3.曼哈顿距离(Manhattan Distance)

4.切比雪夫距离(Chebyshev Distance)

5.夹角余弦(Cosine)

6.汉明距离(Hamming distance)

7.杰卡德相似系数(Jaccard similarity coefficient)

8.贝叶斯公式

1.闵氏距离的定义:

两个n维变量A(x11,x12,…,x1n)与 B(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

Python Numpy计算各类距离的方法

其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

根据变参数的不同,闵氏距离可以表示一类的距离。

np.linalg.norm #是适合使用这个公式

2.欧氏距离(Euclidean Distance)

欧氏距离(L2范数)是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式(如图1.9)。

Python Numpy计算各类距离的方法

python实现欧式距离公式的:

vector1 = np.array([1,2,3])
vector2 = np.array([4,5,6])
 
op1=np.sqrt(np.sum(np.square(vector1-vector2)))
op2=np.linalg.norm(vector1-vector2)
print(op1)
print(op2)
#输出:
#5.19615242271
#5.19615242271

3.曼哈顿距离(Manhattan Distance)

从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”(L1范数)。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)(如图1.10)。

Python Numpy计算各类距离的方法

python实现曼哈顿距离:

vector1 = np.array([1,2,3])
vector2 = np.array([4,5,6])
 
op3=np.sum(np.abs(vector1-vector2))
op4=np.linalg.norm(vector1-vector2,ord=1)
#输出
#9
#9.0

4.切比雪夫距离(Chebyshev Distance)

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个(如图1.11)。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max(| x2-x1| , |y2-y1| ) 步。有一种类似的一种距离度量方法叫切比雪夫距离(L∞范数)。

Python Numpy计算各类距离的方法

 Python实现切比雪夫距离:

vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
op5=np.abs(vector1-vector2).max()
op6=np.linalg.norm(vector1-vector2,ord=np.inf)
print(op5)
print(op6)
#输出:
#5
#5.0

5. 夹角余弦(Cosine)

几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异(如图1.12)。

Python Numpy计算各类距离的方法

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

Python Numpy计算各类距离的方法

(2) 两个n维样本点A (x11,x12,…,x1n)与 B(x21,x22,…,x2n)的夹角余弦
类似的,对于两个n维样本点A(x11,x12,…,x1n)与 B(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

Python Numpy计算各类距离的方法

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

python实现夹角余弦

vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
 
op7=np.dot(vector1,vector2)/(np.linalg.norm(vector1)*(np.linalg.norm(vector2)))
print(op7)
#输出
#0.929669680201

6. 汉明距离(Hamming distance)

(1)汉明距离的定义

两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

(2) python实现汉明距离:

v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
smstr=np.nonzero(v1-v2)
print(smstr) # 不为0 的元素的下标
sm= np.shape(smstr[0])[0] 
print( sm )
#输出
#(array([0, 2, 3, 5, 6, 7]),)
#6

7. 杰卡德相似系数(Jaccard similarity coefficient)

(1) 杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

Python Numpy计算各类距离的方法

(2) 杰卡德距离

与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

Python Numpy计算各类距离的方法

杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3) 杰卡德相似系数与杰卡德距离的应用

可将杰卡德相似系数用在衡量样本的相似度上。

样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

P:样本A与B都是1的维度的个数

q:样本A是1,样本B是0的维度的个数

r:样本A是0,样本B是1的维度的个数

s:样本A与B都是0的维度的个数

那么样本A与B的杰卡德相似系数可以表示为:

这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

而样本A与B的杰卡德距离表示为:

Python Numpy计算各类距离的方法

 Python实现杰卡德距离:

import scipy.spatial.distance as dist
 
v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
 
matv=np.array([v1,v2])
print(matv)
ds=dist.pdist(matv,'jaccard')
print(ds)
 
#输出
#[[1 1 0 1 0 1 0 0 1] [0 1 1 0 0 0 1 1 1]]
 
# [ 0.75]

8. 经典贝叶斯公式

原: P(AB)=P(A | B)·P(B)=P(B | A)·P(A)

Python Numpy计算各类距离的方法

本例,我们不去研究黄色的苹果与黄色的梨有什么差别。而承认其统计规律:苹果是红色的概率是0.8,苹果是黄色的概率就是1-0.8=0.2,而梨是黄色的概率是0.9,将其作为先验概率。有了这个先验概率,就可以利用抽样,即任取一个水果,前提是抽样对总体的概率分布没有影响,通过它的某个特征来划分其所属的类别。黄色是苹果和梨共有的特征,因此,既有可能是苹果也有可能是梨,概率计算的意义在于得到这个水果更有可能的那一种。

条件: 10个苹果10个梨子

用数学的语言来表达,就是已知:

# P(苹果)=10/(10+10),P(梨)=10/(10+10),P(黄色|苹果)=20%,P(黄色|梨)=90%,P(黄色)= 20% * 0.5 + 90% * 0.5 = 55%

求P(梨|黄色):

# = P(黄色|梨)P(梨)/P(黄色)
 
# = 81.8%

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 初始化多维数组代码
Sep 06 Python
python实现监控linux性能及进程消耗性能的方法
Jul 25 Python
用Python编写web API的教程
Apr 30 Python
在Python的Flask框架中构建Web表单的教程
Jun 04 Python
解析Python中的__getitem__专有方法
Jun 27 Python
分享给Python新手们的几道简单练习题
Sep 21 Python
python基础练习之几个简单的游戏
Nov 10 Python
Python中安装easy_install的方法
Nov 18 Python
python使用PIL实现多张图片垂直合并
Jan 15 Python
Python爬虫实现验证码登录代码实例
May 10 Python
python爬虫租房信息在地图上显示的方法
May 13 Python
使用keras实现Precise, Recall, F1-socre方式
Jun 15 Python
ERLANG和PYTHON互通实现过程详解
Jul 05 #Python
python如何读取bin文件并下发串口
Jul 05 #Python
anaconda如何查看并管理python环境
Jul 05 #Python
python笔记之mean()函数实现求取均值的功能代码
Jul 05 #Python
python如何给字典的键对应的值为字典项的字典赋值
Jul 05 #Python
python调用并链接MATLAB脚本详解
Jul 05 #Python
python实现最大子序和(分治+动态规划)
Jul 05 #Python
You might like
海贼王动画变成“真人”后,凯多神还原,雷利太帅了!
2020/04/09 日漫
jQuery中的RadioButton,input,CheckBox取值赋值实现代码
2014/02/18 PHP
Javascript JSQL,SQL无处不在,
2010/05/05 Javascript
js将控件隐藏的方法及display属性介绍
2013/07/04 Javascript
Thinkphp模板没有解析直接原样输出的解决方法
2014/10/31 Javascript
常常会用到的截取字符串substr()、substring()、slice()方法详解
2015/12/16 Javascript
JS传值出现中文参数乱码的解决方法
2016/06/30 Javascript
全面解析Bootstrap表单样式的使用
2016/09/09 Javascript
关于vue.js弹窗组件的知识点总结
2016/09/11 Javascript
分类解析jQuery选择器
2016/11/23 Javascript
JS类的定义与使用方法深入探索
2016/11/26 Javascript
JavaScript Ajax实现异步通信
2016/12/14 Javascript
Vue-Router实现页面正在加载特效方法示例
2017/02/12 Javascript
在Vue中获取组件声明时的name属性方法
2018/09/12 Javascript
JavaScript中filter的用法实例分析
2019/02/27 Javascript
基于vue通用表单解决方案的思考与分析
2019/03/16 Javascript
vue--vuex详解
2019/04/15 Javascript
vue实现分页栏效果
2019/06/28 Javascript
javascript读取本地文件和目录方法详解
2020/08/06 Javascript
强悍的Python读取大文件的解决方案
2019/02/16 Python
11个Python Pandas小技巧让你的工作更高效(附代码实例)
2019/04/30 Python
python Plotly绘图工具的简单使用
2020/03/03 Python
如何解决安装python3.6.1失败
2020/07/01 Python
详解python os.path.exists判断文件或文件夹是否存在
2020/11/16 Python
HTML5 FormData 方法介绍以及实现文件上传示例
2017/09/12 HTML / CSS
加拿大时尚少女服装品牌:Garage
2016/10/10 全球购物
美国厨房和园艺工具网上商店:Nestneed
2019/08/24 全球购物
面试后感谢信怎么写
2014/02/01 职场文书
2014年度培训工作总结
2014/11/27 职场文书
店铺转让协议书
2015/01/29 职场文书
同学会邀请函模板
2015/01/30 职场文书
幼儿园元旦主持词
2015/07/06 职场文书
诚实守信主题班会
2015/08/13 职场文书
浅谈PHP7中的一些小技巧
2021/05/29 PHP
Nginx反向代理配置的全过程记录
2021/06/22 Servers
PostgreSQL数据库创建并使用视图以及子查询
2022/04/11 PostgreSQL