浅析Python实现DFA算法


Posted in Python onJune 26, 2021

一、概述

计算机操作系统中的进程状态与切换可以作为 DFA 算法的一种近似理解。如下图所示,其中椭圆表示状态,状态之间的连线表示事件,进程的状态以及事件都是可确定的,且都可以穷举。

浅析Python实现DFA算法

DFA 算法具有多种应用,在此先介绍在匹配关键词领域的应用。

二、匹配关键词

我们可以将每个文本片段作为状态,例如“匹配关键词”可拆分为“匹”、“匹配”、“匹配关”、“匹配关键”和“匹配关键词”五个文本片段。

浅析Python实现DFA算法

【过程】:

  • 初始状态为空,当触发事件“匹”时转换到状态“匹”;
  • 触发事件“配”,转换到状态“匹配”;
  • 依次类推,直到转换为最后一个状态“匹配关键词”。

再让我们考虑多个关键词的情况,例如“匹配算法”、“匹配关键词”以及“信息抽取”。

浅析Python实现DFA算法

可以看到上图的状态图类似树形结构,也正是因为这个结构,使得 DFA 算法在关键词匹配方面要快于关键词迭代方法(for 循环)。经常刷 LeetCode 的读者应该清楚树形结构的时间复杂度要小于 for 循环的时间复杂度。

for 循环:

keyword_list = []

for keyword in ["匹配算法", "匹配关键词", "信息抽取"]:
    if keyword in "DFA 算法匹配关键词":
        keyword_list.append(keyword)

for 循环需要遍历一遍关键词表,随着关键词表的扩充,所需的时间也会越来越长。

DFA 算法:找到“匹”时,只会按照事件走向特定的序列,例如“匹配关键词”,而不会走向“匹配算法”,因此遍历的次数要小于 for 循环。具体的实现放在下文中。

【问】:那么如何构建状态图所示的结构呢?

【答】:在 Python 中我们可以使用 dict 数据结构。

state_event_dict = {
    "匹": {
        "配": {
            "算": {
                "法": {
                    "is_end": True
                },
                "is_end": False
            },
            "关": {
                "键": {
                    "词": {
                        "is_end": True
                    },
                    "is_end": False
                },
                "is_end": False
            },
            "is_end": False
        },
        "is_end": False
    },
    "信": {
        "息": {
            "抽": {
                "取": {
                    "is_end": True
                },
                "is_end": False
            },
            "is_end": False
        },
        "is_end": False
    }
}

用嵌套字典来作为树形结构,key 作为事件,通过 is_end 字段来判断状态是否为最后一个状态,如果是最后一个状态,则停止状态转换,获取匹配的关键词。

【问】:如果关键词存在包含关系,例如“匹配关键词”和“匹配”,那么该如何处理呢?

【答】:我们仍然可以用 is_end 字段来表示关键词的结尾,同时添加一个新的字段,例如 is_continue 来表明仍可继续进行匹配。除此之外,也可以通过寻找除 is_end 字段外是否还有其他的字段来判断是否继续进行匹配。例如下面代码中的“配”,除了 is_end 字段外还有“关”,因此还需要继续进行匹配。

state_event_dict = {
    "匹": {
        "配": {
            "关": {
                "键": {
                    "词": {
                        "is_end": True
                    },
                    "is_end": False
                },
                "is_end": False
            },
            "is_end": True
        },
        "is_end": False
    }
}

接下来,我们来实现这个算法。

三、算法实现

使用 Python 3.6 版本实现,当然 Python 3.X 都能运行。

3.1、构建存储结构

def _generate_state_event_dict(keyword_list: list) -> dict:
    state_event_dict = {}

    # 遍历每一个关键词
    for keyword in keyword_list:
        current_dict = state_event_dict
        length = len(keyword)

        for index, char in enumerate(keyword):
            if char not in current_dict:
                next_dict = {"is_end": False}
                current_dict[char] = next_dict
                current_dict = next_dict
            else:
                next_dict = current_dict[char]
                current_dict = next_dict

            if index == length - 1:
                current_dict["is_end"] = True

    return state_event_dict

关于上述代码仍然有不少可迭代优化的地方,例如先对关键词列表按照字典序进行排序,这样可以让具有相同前缀的关键词集中在一块,从而在构建存储结构时能够减少遍历的次数。

3.2、匹配关键词

def match(state_event_dict: dict, content: str):
    match_list = []
    state_list = []
    temp_match_list = []

    for char_pos, char in enumerate(content):
        # 首先找到匹配项的起点
        if char in state_event_dict:
            state_list.append(state_event_dict)
            temp_match_list.append({
                "start": char_pos,
                "match": ""
            })

        # 可能会同时满足多个匹配项,因此遍历这些匹配项
        for index, state in enumerate(state_list):
            if char in state:
                state_list[index] = state[char]
                temp_match_list[index]["match"] += char

                # 如果抵达匹配项的结尾,表明匹配关键词完成
                if state[char]["is_end"]:
                    match_list.append(copy.deepcopy(temp_match_list[index]))

                    # 如果还能继续,则继续进行匹配
                    if len(state[char].keys()) == 1:
                        state_list.pop(index)
                        temp_match_list.pop(index)
            # 如果不满足匹配项的要求,则将其移除
            else:
                state_list.pop(index)
                temp_match_list.pop(index)

    return match_list

3.3、完整代码

import re
import copy


class DFA:

    def __init__(self, keyword_list: list):
        self.state_event_dict = self._generate_state_event_dict(keyword_list)

    def match(self, content: str):
        match_list = []
        state_list = []
        temp_match_list = []

        for char_pos, char in enumerate(content):
            if char in self.state_event_dict:
                state_list.append(self.state_event_dict)
                temp_match_list.append({
                    "start": char_pos,
                    "match": ""
                })

            for index, state in enumerate(state_list):
                if char in state:
                    state_list[index] = state[char]
                    temp_match_list[index]["match"] += char

                    if state[char]["is_end"]:
                        match_list.append(copy.deepcopy(temp_match_list[index]))

                        if len(state[char].keys()) == 1:
                            state_list.pop(index)
                            temp_match_list.pop(index)
                else:
                    state_list.pop(index)
                    temp_match_list.pop(index)

        return match_list

    @staticmethod
    def _generate_state_event_dict(keyword_list: list) -> dict:
        state_event_dict = {}

        for keyword in keyword_list:
            current_dict = state_event_dict
            length = len(keyword)

            for index, char in enumerate(keyword):
                if char not in current_dict:
                    next_dict = {"is_end": False}
                    current_dict[char] = next_dict
                    current_dict = next_dict
                else:
                    next_dict = current_dict[char]
                    current_dict = next_dict

                if index == length - 1:
                    current_dict["is_end"] = True

        return state_event_dict


if __name__ == "__main__":
    dfa = DFA(["匹配关键词", "匹配算法", "信息抽取", "匹配"])
    print(dfa.match("信息抽取之 DFA 算法匹配关键词,匹配算法"))

输出:

[

    {

        'start': 0, 

        'match': '信息抽取'

    }, {

        'start': 12, 

        'match': '匹配'

    }, {

        'start': 12, 

        'match': '匹配关键词'

    }, {

        'start': 18, 

        'match': '匹配'

    }, {

        'start': 18,

        'match': '匹配算法'

    }

]

四、其他用法

4.1、添加通配符

在敏感词识别时往往会遇到同一种类型的句式,例如“你这个傻X”,其中 X 可以有很多,难道我们需要一个个添加到关键词表中吗?最好能够通过类似正则表达式的方法去进行识别。一个简单的做法就是“*”,匹配任何内容。

添加通配符只需要对匹配关键词过程进行修改:

def match(self, content: str):
    match_list = []
    state_list = []
    temp_match_list = []

    for char_pos, char in enumerate(content):
        if char in self.state_event_dict:
            state_list.append(self.state_event_dict)
            temp_match_list.append({
                "start": char_pos,
                "match": ""
            })

        for index, state in enumerate(state_list):
            is_find = False
            state_char = None

            # 如果是 * 则匹配所有内容
            if "*" in state:
                state_list[index] = state["*"]
                state_char = state["*"]
                is_find = True

            if char in state:
                state_list[index] = state[char]
                state_char = state[char]
                is_find = True

            if is_find:
                temp_match_list[index]["match"] += char

                if state_char["is_end"]:
                    match_list.append(copy.deepcopy(temp_match_list[index]))

                    if len(state_char.keys()) == 1:
                        state_list.pop(index)
                        temp_match_list.pop(index)
            else:
                state_list.pop(index)
                temp_match_list.pop(index)

    return match_list

main() 函数。

if __name__ == "__main__":
    dfa = DFA(["匹配关键词", "匹配算法", "信息*取", "匹配"])
    print(dfa.match("信息抽取之 DFA 算法匹配关键词,匹配算法,信息抓取"))

输出:

[

    {

        'start': 0, 

        'match': '信息抽取'

    }, {

        'start': 12,

        'match': '匹配'

    }, {

        'start': 12,

        'match': '匹配关键词'

    }, {

        'start': 18,

        'match': '匹配'

    }, {

        'start': 18,

        'match': '匹配算法'

    }, {

        'start': 23,

        'match': '信息抓取'

    }

]

以上就是浅析Python实现DFA算法的详细内容,更多关于Python DFA算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
用python实现面向对像的ASP程序实例
Nov 10 Python
Python实现屏幕截图的代码及函数详解
Oct 01 Python
详解Python在七牛云平台的应用(一)
Dec 05 Python
关于反爬虫的一些简单总结
Dec 13 Python
pandas通过loc生成新的列方法
Nov 28 Python
Python爬虫设置代理IP(图文)
Dec 23 Python
python三方库之requests的快速上手
Mar 04 Python
Django框架搭建的简易图书信息网站案例
May 25 Python
python 变量初始化空列表的例子
Nov 28 Python
Python 解码Base64 得到码流格式文本实例
Jan 09 Python
Python smtp邮件发送模块用法教程
Jun 15 Python
python中watchdog文件监控与检测上传功能
Oct 30 Python
解析目标检测之IoU
pycharm代码删除恢复的方法
Python max函数中key的用法及原理解析
Python访问Redis的详细操作
一文搞懂python异常处理、模块与包
Python实战之OpenCV实现猫脸检测
Python爬虫基础之简单说一下scrapy的框架结构
You might like
mac下安装nginx和php
2013/11/04 PHP
使用php显示搜索引擎来的关键词
2014/02/13 PHP
用PHP代替JS玩转DOM的思路及示例代码
2014/06/15 PHP
PHP mongodb操作类定义与用法示例【适合mongodb2.x和mongodb3.x】
2018/06/16 PHP
文本框的字数限制功能jquery插件
2009/11/24 Javascript
Google排名中的10个最著名的 JavaScript库
2010/04/27 Javascript
javascript回到顶部特效
2016/07/30 Javascript
JavaScript使用键盘输入控制实现数字验证功能
2016/08/19 Javascript
AngularJS 指令的交互详解及实例代码
2016/09/14 Javascript
AngularJS 防止页面闪烁的方法
2017/03/09 Javascript
webpack配置文件和常用配置项介绍
2017/04/28 Javascript
js-FCC算法-No repeats please字符串的全排列(详解)
2017/05/02 Javascript
easyui combogrid实现本地模糊搜索过滤多列
2017/05/13 Javascript
微信小程序之绑定点击事件实例详解
2017/07/07 Javascript
React Native之ListView实现九宫格效果的示例
2017/08/02 Javascript
Nodejs实现微信分账的示例代码
2021/01/19 NodeJs
在Python的Django框架中获取单个对象数据的简单方法
2015/07/17 Python
Python-嵌套列表list的全面解析
2016/06/08 Python
Python入门_学会创建并调用函数的方法
2017/05/16 Python
Python3 jupyter notebook 服务器搭建过程
2018/11/30 Python
简单了解Django ContentType内置组件
2019/07/23 Python
python2爬取百度贴吧指定关键字和图片代码实例
2019/08/14 Python
在vscode中配置python环境过程解析
2019/09/28 Python
详解Python中list[::-1]的几种用法
2020/11/16 Python
python 实现汉诺塔游戏
2020/11/28 Python
详解java调用python的几种用法(看这篇就够了)
2020/12/10 Python
python tkinter实现下载进度条及抖音视频去水印原理
2021/02/07 Python
使用HTML5原生对话框元素并轻松创建模态框组件
2019/03/06 HTML / CSS
英国山地公路自行车商店:Tweeks Cycles
2018/03/16 全球购物
意大利巧克力店:Chocolate Shop
2019/07/24 全球购物
会计系毕业个人自荐信格式
2013/09/23 职场文书
艺术设计专业毕业生推荐信
2014/07/08 职场文书
员工三分钟演讲稿
2014/08/19 职场文书
2014年个人年终总结
2015/03/09 职场文书
贷款收入证明格式
2015/06/24 职场文书
给原生html中添加水印遮罩层的实现示例
2021/04/02 Javascript