Python并发爬虫常用实现方法解析


Posted in Python onNovember 19, 2020

在进行单个爬虫抓取的时候,我们不可能按照一次抓取一个url的方式进行网页抓取,这样效率低,也浪费了cpu的资源。目前python上面进行并发抓取的实现方式主要有以下几种:进程,线程,协程。进程不在的讨论范围之内,一般来说,进程是用来开启多个spider,比如我们开启了4进程,同时派发4个spider进行网络抓取,每个spider同时抓取4个url。

所以,我们今天讨论的是,在单个爬虫的情况下,尽可能的在同一个时间并发抓取,并且抓取的效率要高。

一.顺序抓取

顺序抓取是最最常见的抓取方式,一般初学爬虫的朋友就是利用这种方式,下面是一个测试代码,顺序抓取8个url,我们可以来测试一下抓取完成需要多少时间:

HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',         
  'Accept-Language': 'zh-CN,zh;q=0.8',                            
  'Accept-Encoding': 'gzip, deflate',}                            
URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',                   
    'https://www.zhihu.com/topic/19804387/newest',                    
    'http://blog.csdn.net/yueguanghaidao/article/details/24281751',            
    'https://my.oschina.net/visualgui823/blog/36987',                   
    'http://blog.chinaunix.net/uid-9162199-id-4738168.html',               
    'http://www.tuicool.com/articles/u67Bz26',                      
    'http://rfyiamcool.blog.51cto.com/1030776/1538367/',                 
    'http://itindex.net/detail/26512-flask-tornado-gevent']                
                                               
#url为随机获取的一批url                                        
                                               
def func():                                          
  """                                            
  顺序抓取                                           
  """                                            
  import requests                                      
  import time                                        
  urls = URLS                                        
  headers = HEADERS                                     
  headers['user-agent'] = "Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537" \      
              ".36+(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36"   
  print(u'顺序抓取')                                      
  starttime= time.time()                                  
  for url in urls:                                     
    try:                                         
      r = requests.get(url, allow_redirects=False, timeout=2.0, headers=headers)    
    except:                                        
      pass                                       
    else:                                         
      print(r.status_code, r.url)                            
  endtime=time.time()                                    
  print(endtime-starttime)                                 
                                               
func()

我们直接采用内建的time.time()来计时,较为粗略,但可以反映大概的情况。下面是顺序抓取的结果计时:

Python并发爬虫常用实现方法解析

可以从图片中看到,显示的顺序与urls的顺序是一模一样的,总共耗时为7.763269901275635秒,一共8个url,平均抓取一个大概需要0.97秒。总体来看,还可以接受。

二.多线程抓取

线程是python内的一种较为不错的并发方式,我们也给出相应的代码,并且为每个url创建了一个线程,一共8线程并发抓取,下面的代码:

下面是我们运行8线程的测试代码:

HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',               
  'Accept-Language': 'zh-CN,zh;q=0.8',                                  
  'Accept-Encoding': 'gzip, deflate',}                                  
URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',                          
    'https://www.zhihu.com/topic/19804387/newest',                           
    'http://blog.csdn.net/yueguanghaidao/article/details/24281751',                  
    'https://my.oschina.net/visualgui823/blog/36987',                         
    'http://blog.chinaunix.net/uid-9162199-id-4738168.html',                      
    'http://www.tuicool.com/articles/u67Bz26',                             
    'http://rfyiamcool.blog.51cto.com/1030776/1538367/',                        
    'http://itindex.net/detail/26512-flask-tornado-gevent']                      
                                                      
def thread():                                               
  from threading import Thread                                      
  import requests                                            
  import time                                              
  urls = URLS                                              
  headers = HEADERS                                           
  headers['user-agent'] = "Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537.36+" \          
              "(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36"            
  def get(url):                                             
    try:                                                
      r = requests.get(url, allow_redirects=False, timeout=2.0, headers=headers)           
    except:                                              
      pass                                              
    else:                                               
      print(r.status_code, r.url)                                  
                                                      
  print(u'多线程抓取')                                            
  ts = [Thread(target=get, args=(url,)) for url in urls]                         
  starttime= time.time()                                         
  for t in ts:                                              
    t.start()                                             
  for t in ts:                                              
    t.join()                                              
  endtime=time.time()                                          
  print(endtime-starttime)                                        
thread()

多线程抓住的时间如下:

Python并发爬虫常用实现方法解析

可以看到相较于顺序抓取,8线程的抓取效率明显上升了3倍多,全部完成只消耗了2.154秒。可以看到显示的结果已经不是urls的顺序了,说明每个url各自完成的时间都是不一样的。线程就是在一个进程中不断的切换,让每个线程各自运行一会,这对于网络io来说,性能是非常高的。但是线程之间的切换是挺浪费资源的。

三.gevent并发抓取

gevent是一种轻量级的协程,可用它来代替线程,而且,他是在一个线程中运行,机器资源的损耗比线程低很多。如果遇到了网络io阻塞,会马上切换到另一个程序中去运行,不断的轮询,来降低抓取的时间
下面是测试代码:

HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',
  'Accept-Language': 'zh-CN,zh;q=0.8',
  'Accept-Encoding': 'gzip, deflate',}

URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',
    'https://www.zhihu.com/topic/19804387/newest',
    'http://blog.csdn.net/yueguanghaidao/article/details/24281751',
    'https://my.oschina.net/visualgui823/blog/36987',
    'http://blog.chinaunix.net/uid-9162199-id-4738168.html',
    'http://www.tuicool.com/articles/u67Bz26',
    'http://rfyiamcool.blog.51cto.com/1030776/1538367/',
    'http://itindex.net/detail/26512-flask-tornado-gevent']

def main():
  """
  gevent并发抓取
  """
  import requests
  import gevent
  import time

  headers = HEADERS
  headers['user-agent'] = "Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537.36+" \
              "(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36"
  urls = URLS
  def get(url):
    try:
      r = requests.get(url, allow_redirects=False, timeout=2.0, headers=headers)
    except:
      pass
    else:
      print(r.status_code, r.url)

  print(u'基于gevent的并发抓取')
  starttime= time.time()
  g = [gevent.spawn(get, url) for url in urls]
  gevent.joinall(g)
  endtime=time.time()
  print(endtime - starttime)
main()

协程的抓取时间如下:

Python并发爬虫常用实现方法解析

正常情况下,gevent的并发抓取与多线程的消耗时间差不了多少,但是可能是我网络的原因,或者机器的性能的原因,时间有点长......,请各位小主在自己电脑进行跑一下看运行时间

四.基于tornado的coroutine并发抓取

tornado中的coroutine是python中真正意义上的协程,与python3中的asyncio几乎是完全一样的,而且两者之间的future是可以相互转换的,tornado中有与asyncio相兼容的接口。
下面是利用tornado中的coroutine进行并发抓取的代码:

利用coroutine编写并发略显复杂,但这是推荐的写法,如果你使用的是python3,强烈建议你使用coroutine来编写并发抓取。

下面是测试代码:

HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',
  'Accept-Language': 'zh-CN,zh;q=0.8',
  'Accept-Encoding': 'gzip, deflate',}

URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',
    'https://www.zhihu.com/topic/19804387/newest',
    'http://blog.csdn.net/yueguanghaidao/article/details/24281751',
    'https://my.oschina.net/visualgui823/blog/36987',
    'http://blog.chinaunix.net/uid-9162199-id-4738168.html',
    'http://www.tuicool.com/articles/u67Bz26',
    'http://rfyiamcool.blog.51cto.com/1030776/1538367/',
    'http://itindex.net/detail/26512-flask-tornado-gevent']
import time
from tornado.gen import coroutine
from tornado.ioloop import IOLoop
from tornado.httpclient import AsyncHTTPClient, HTTPError
from tornado.httpclient import HTTPRequest

#urls与前面相同
class MyClass(object):

  def __init__(self):
    #AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")
    self.http = AsyncHTTPClient()

  @coroutine
  def get(self, url):
    #tornado会自动在请求首部带上host首部
    request = HTTPRequest(url=url,
              method='GET',
              headers=HEADERS,
              connect_timeout=2.0,
              request_timeout=2.0,
              follow_redirects=False,
              max_redirects=False,
              user_agent="Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537.36+\
              (KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36",)
    yield self.http.fetch(request, callback=self.find, raise_error=False)

  def find(self, response):
    if response.error:
      print(response.error)
    print(response.code, response.effective_url, response.request_time)


class Download(object):

  def __init__(self):
    self.a = MyClass()
    self.urls = URLS

  @coroutine
  def d(self):
    print(u'基于tornado的并发抓取')
    starttime = time.time()
    yield [self.a.get(url) for url in self.urls]
    endtime=time.time()
    print(endtime-starttime)

if __name__ == '__main__':
  dd = Download()
  loop = IOLoop.current()
  loop.run_sync(dd.d)

抓取的时间如下:

Python并发爬虫常用实现方法解析

可以看到总共花费了128087秒,而这所花费的时间恰恰就是最后一个url抓取所需要的时间,tornado中自带了查看每个请求的相应时间。我们可以从图中看到,最后一个url抓取总共花了1.28087秒,相较于其他时间大大的增加,这也是导致我们消耗时间过长的原因。那可以推断出,前面的并发抓取,也在这个url上花费了较多的时间。

总结:

以上测试其实非常的不严谨,因为我们选取的url的数量太少了,完全不能反映每一种抓取方式的优劣。如果有一万个不同的url同时抓取,那么记下总抓取时间,是可以得出一个较为客观的结果的。

并且,已经有人测试过,多线程抓取的效率是远不如gevent的。所以,如果你使用的是python2,那么我推荐你使用gevent进行并发抓取;如果你使用的是python3,我推荐你使用tornado的http客户端结合coroutine进行并发抓取。从上面的结果来看,tornado的coroutine是高于gevent的轻量级的协程的。但具体结果怎样,我没测试过。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现简单socket程序在两台电脑之间传输消息的方法
Mar 13 Python
Python实现的简单模板引擎功能示例
Sep 02 Python
python实现数据库跨服务器迁移
Apr 12 Python
使用python批量读取word文档并整理关键信息到excel表格的实例
Nov 07 Python
python RabbitMQ 使用详细介绍(小结)
Nov 08 Python
Pytorch卷积层手动初始化权值的实例
Aug 17 Python
浅谈pandas.cut与pandas.qcut的使用方法及区别
Mar 03 Python
利用jupyter网页版本进行python函数查询方式
Apr 14 Python
如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)
Apr 22 Python
matplotlib 生成的图像中无法显示中文字符的解决方法
Jun 10 Python
python zip()函数的使用示例
Sep 23 Python
Python基础教程,Python入门教程(超详细)
Jun 24 Python
python实现文件分片上传的接口自动化
Nov 19 #Python
Python类class参数self原理解析
Nov 19 #Python
Python爬虫如何破解JS加密的Cookie
Nov 19 #Python
python制作一个简单的gui 数据库查询界面
Nov 19 #Python
解决python3中os.popen()出错的问题
Nov 19 #Python
Python中return函数返回值实例用法
Nov 19 #Python
python 三种方法实现对Excel表格的读写
Nov 19 #Python
You might like
德生S2000收音机更换“钕铁硼”全频扬声器
2021/03/02 无线电
使用php+xslt在windows平台上
2006/10/09 PHP
smarty自定义函数htmlcheckboxes用法实例
2015/01/22 PHP
php实现往pdf中加数字签名操作示例【附源码下载】
2018/08/07 PHP
Locate a File Using a File Open Dialog Box
2007/06/18 Javascript
js实现瀑布流的一种简单方法实例分享
2013/11/04 Javascript
js整数字符串转换为金额类型数据(示例代码)
2013/12/26 Javascript
javascript简单性能问题及学习笔记
2014/02/04 Javascript
Javascript堆排序算法详解
2014/12/03 Javascript
node.js读取文件到字符串的方法
2015/06/29 Javascript
javascript实现信息增删改查的方法
2015/07/25 Javascript
以jQuery中$.Deferred对象为例讲解promise对象是如何处理异步问题
2015/11/13 Javascript
JS组件Bootstrap Table布局详解
2016/05/27 Javascript
js拖拽功能实现代码解析
2016/11/28 Javascript
Python 查看文件的读写权限方法
2018/01/23 Python
Python实现的圆形绘制(画圆)示例
2018/01/31 Python
Window10+Python3.5安装opencv的教程推荐
2018/04/02 Python
django使用LDAP验证的方法示例
2018/12/10 Python
python读取txt文件并取其某一列数据的示例
2019/02/19 Python
Flask框架重定向,错误显示,Responses响应及Sessions会话操作示例
2019/08/01 Python
python多进程下的生产者和消费者模型
2020/05/07 Python
CSS3 3D酷炫立方体变换动画的实现
2019/03/26 HTML / CSS
2分钟教你实现环形/扇形菜单(基础版)
2020/01/15 HTML / CSS
金牌葡萄酒俱乐部:Gold Medal Wine Club
2017/11/02 全球购物
大学生自荐信
2013/12/11 职场文书
如何编写优秀的食品项目创业计划书
2014/01/23 职场文书
护士自我评价范文
2014/01/25 职场文书
生物制药专业自我鉴定
2014/02/19 职场文书
聚美优品陈欧广告词
2014/03/14 职场文书
运动会演讲稿200字
2014/08/25 职场文书
2014年村党支部工作总结
2014/12/04 职场文书
7个你应该知道的JS原生错误类型
2021/04/29 Javascript
Java基础之this关键字的使用
2021/06/30 Java/Android
对象析构函数__del__在Python中何时使用
2022/03/22 Python
不负正版帝国之名 《重返帝国》引领SLG手游制作新的标杆
2022/04/07 其他游戏
Windows server 2012 R2 安装IIS服务器
2022/04/29 Servers