keras CNN卷积核可视化,热度图教程


Posted in Python onJune 22, 2020

卷积核可视化

import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.models import load_model

# 将浮点图像转换成有效图像
def deprocess_image(x):
 # 对张量进行规范化
 x -= x.mean()
 x /= (x.std() + 1e-5)
 x *= 0.1
 x += 0.5
 x = np.clip(x, 0, 1)
 # 转化到RGB数组
 x *= 255
 x = np.clip(x, 0, 255).astype('uint8')
 return x

# 可视化滤波器
def kernelvisual(model, layer_target=1, num_iterate=100):
 # 图像尺寸和通道
 img_height, img_width, num_channels = K.int_shape(model.input)[1:4]
 num_out = K.int_shape(model.layers[layer_target].output)[-1]

 plt.suptitle('[%s] convnet filters visualizing' % model.layers[layer_target].name)

 print('第%d层有%d个通道' % (layer_target, num_out))
 for i_kernal in range(num_out):
  input_img = model.input
  # 构建一个损耗函数,使所考虑的层的第n个滤波器的激活最大化,-1层softmax层
  if layer_target == -1:
   loss = K.mean(model.output[:, i_kernal])
  else:
   loss = K.mean(model.layers[layer_target].output[:, :, :, i_kernal]) # m*28*28*128
  # 计算图像对损失函数的梯度
  grads = K.gradients(loss, input_img)[0]
  # 效用函数通过其L2范数标准化张量
  grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
  # 此函数返回给定输入图像的损耗和梯度
  iterate = K.function([input_img], [loss, grads])
  # 从带有一些随机噪声的灰色图像开始
  np.random.seed(0)
  # 随机图像
  # input_img_data = np.random.randint(0, 255, (1, img_height, img_width, num_channels)) # 随机
  # input_img_data = np.zeros((1, img_height, img_width, num_channels)) # 零值
  input_img_data = np.random.random((1, img_height, img_width, num_channels)) * 20 + 128. # 随机灰度
  input_img_data = np.array(input_img_data, dtype=float)
  failed = False
  # 运行梯度上升
  print('####################################', i_kernal + 1)
  loss_value_pre = 0
  # 运行梯度上升num_iterate步
  for i in range(num_iterate):
   loss_value, grads_value = iterate([input_img_data])
   if i % int(num_iterate/5) == 0:
    print('Iteration %d/%d, loss: %f' % (i, num_iterate, loss_value))
    print('Mean grad: %f' % np.mean(grads_value))
    if all(np.abs(grads_val) < 0.000001 for grads_val in grads_value.flatten()):
     failed = True
     print('Failed')
     break
    if loss_value_pre != 0 and loss_value_pre > loss_value:
     break
    if loss_value_pre == 0:
     loss_value_pre = loss_value
    # if loss_value > 0.99:
    #  break
   input_img_data += grads_value * 1 # e-3
  img_re = deprocess_image(input_img_data[0])
  if num_channels == 1:
   img_re = np.reshape(img_re, (img_height, img_width))
  else:
   img_re = np.reshape(img_re, (img_height, img_width, num_channels))
  plt.subplot(np.ceil(np.sqrt(num_out)), np.ceil(np.sqrt(num_out)), i_kernal + 1)
  plt.imshow(img_re) # , cmap='gray'
  plt.axis('off')

 plt.show()

运行

model = load_model('train3.h5')
kernelvisual(model,-1) # 对最终输出可视化
kernelvisual(model,6) # 对第二个卷积层可视化

keras CNN卷积核可视化,热度图教程

keras CNN卷积核可视化,热度图教程

热度图

import cv2
import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.preprocessing import image

def heatmap(model, data_img, layer_idx, img_show=None, pred_idx=None):
 # 图像处理
 if data_img.shape.__len__() != 4:
  # 由于用作输入的img需要预处理,用作显示的img需要原图,因此分开两个输入
  if img_show is None:
   img_show = data_img
  # 缩放
  input_shape = K.int_shape(model.input)[1:3]  # (28,28)
  data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape))
  # 添加一个维度->(1, 224, 224, 3)
  data_img = np.expand_dims(data_img, axis=0)
 if pred_idx is None:
  # 预测
  preds = model.predict(data_img)
  # 获取最高预测项的index
  pred_idx = np.argmax(preds[0])
 # 目标输出估值
 target_output = model.output[:, pred_idx]
 # 目标层的输出代表各通道关注的位置
 last_conv_layer_output = model.layers[layer_idx].output
 # 求最终输出对目标层输出的导数(优化目标层输出),代表目标层输出对结果的影响
 grads = K.gradients(target_output, last_conv_layer_output)[0]
 # 将每个通道的导数取平均,值越高代表该通道影响越大
 pooled_grads = K.mean(grads, axis=(0, 1, 2))
 iterate = K.function([model.input], [pooled_grads, last_conv_layer_output[0]])
 pooled_grads_value, conv_layer_output_value = iterate([data_img])
 # 将各通道关注的位置和各通道的影响乘起来
 for i in range(conv_layer_output_value.shape[-1]):
  conv_layer_output_value[:, :, i] *= pooled_grads_value[i]

 # 对各通道取平均得图片位置对结果的影响
 heatmap = np.mean(conv_layer_output_value, axis=-1)
 # 规范化
 heatmap = np.maximum(heatmap, 0)
 heatmap /= np.max(heatmap)
 # plt.matshow(heatmap)
 # plt.show()
 # 叠加图片
 # 缩放成同等大小
 heatmap = cv2.resize(heatmap, (img_show.shape[1], img_show.shape[0]))
 heatmap = np.uint8(255 * heatmap)
 # 将热图应用于原始图像.由于opencv热度图为BGR,需要转RGB
 superimposed_img = img_show + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)[:,:,::-1] * 0.4
 # 截取转uint8
 superimposed_img = np.minimum(superimposed_img, 255).astype('uint8')
 return superimposed_img, heatmap
 # 显示图片
 # plt.imshow(superimposed_img)
 # plt.show()
 # 保存为文件
 # superimposed_img = img + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) * 0.4
 # cv2.imwrite('ele.png', superimposed_img)

# 生成所有卷积层的热度图
def heatmaps(model, data_img, img_show=None):
 if img_show is None:
  img_show = np.array(data_img)
 # Resize
 input_shape = K.int_shape(model.input)[1:3] # (28,28,1)
 data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape))
 # 添加一个维度->(1, 224, 224, 3)
 data_img = np.expand_dims(data_img, axis=0)
 # 预测
 preds = model.predict(data_img)
 # 获取最高预测项的index
 pred_idx = np.argmax(preds[0])
 print("预测为:%d(%f)" % (pred_idx, preds[0][pred_idx]))
 indexs = []
 for i in range(model.layers.__len__()):
  if 'conv' in model.layers[i].name:
   indexs.append(i)
 print('模型共有%d个卷积层' % indexs.__len__())
 plt.suptitle('heatmaps for each conv')
 for i in range(indexs.__len__()):
  ret = heatmap(model, data_img, indexs[i], img_show=img_show, pred_idx=pred_idx)
  plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 1)\
   .set_title(model.layers[indexs[i]].name)
  plt.imshow(ret[0])
  plt.axis('off')
  plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 2)\
   .set_title(model.layers[indexs[i]].name)
  plt.imshow(ret[1])
  plt.axis('off')
 plt.show()

运行

from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input

model = VGG16(weights='imagenet')
data_img = image.img_to_array(image.load_img('elephant.png'))
# VGG16预处理:RGB转BGR,并对每一个颜色通道去均值中心化
data_img = preprocess_input(data_img)
img_show = image.img_to_array(image.load_img('elephant.png'))

heatmaps(model, data_img, img_show)

elephant.png

keras CNN卷积核可视化,热度图教程

keras CNN卷积核可视化,热度图教程

结语

踩坑踩得我脚疼

以上这篇keras CNN卷积核可视化,热度图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 搭建Web站点之Web服务器与Web框架
Nov 06 Python
Python入门_浅谈字符串的分片与索引、字符串的方法
May 16 Python
解决Python3.5+OpenCV3.2读取图像的问题
Dec 05 Python
Pycharm配置远程调试的方法步骤
Dec 17 Python
python 协程中的迭代器,生成器原理及应用实例详解
Oct 28 Python
python、Matlab求定积分的实现
Nov 20 Python
python如何求数组连续最大和的示例代码
Feb 04 Python
Python3操作MongoDB增册改查等方法详解
Feb 10 Python
Python定时器线程池原理详解
Feb 26 Python
flask框架中的cookie和session使用
Jan 31 Python
Python Numpy之linspace用法说明
Apr 17 Python
pytorch损失反向传播后梯度为none的问题
May 12 Python
python实现斗地主分牌洗牌
Jun 22 #Python
解决Keras使用GPU资源耗尽的问题
Jun 22 #Python
Keras - GPU ID 和显存占用设定步骤
Jun 22 #Python
Python 基于jwt实现认证机制流程解析
Jun 22 #Python
python中format函数如何使用
Jun 22 #Python
Tensorflow与Keras自适应使用显存方式
Jun 22 #Python
python数据类型强制转换实例详解
Jun 22 #Python
You might like
PHP实现异步调用方法研究与分享
2011/10/27 PHP
PHP中数组定义的几种方法
2013/09/01 PHP
Yii中Model(模型)的创建及使用方法
2015/12/28 PHP
小程序微信退款功能实现方法详解【基于thinkPHP】
2019/05/05 PHP
Yii redis集合的基本使用教程
2020/06/14 PHP
PHP ob缓存以及ob函数原理实例解析
2020/11/13 PHP
cnblogs中在闪存中屏蔽某人的实现代码
2010/11/14 Javascript
jQuery 过滤not()与filter()实例代码
2012/05/10 Javascript
使用JavaScript进行进制转换将字符串转换为十进制
2014/09/21 Javascript
jquery比较简洁的软键盘特效实现方法
2015/03/19 Javascript
JavaScript html5 canvas绘制时钟效果(二)
2016/03/27 Javascript
js中小数向上取整数,向下取整数,四舍五入取整数的实现(必看篇)
2017/02/13 Javascript
bootstrapValidator 重新启用提交按钮的方法
2017/02/20 Javascript
详解如何用babel转换es6的class语法
2018/04/03 Javascript
Angular4 反向代理Details实践
2018/05/30 Javascript
微信小程序实现弹出层效果
2020/05/26 Javascript
微信小程序select下拉框实现效果
2019/05/15 Javascript
LayUi数据表格自定义赋值方式
2019/10/26 Javascript
Python简单日志处理类分享
2015/02/14 Python
Python比较文件夹比另一同名文件夹多出的文件并复制出来的方法
2015/03/05 Python
python遍历目录的方法小结
2016/04/28 Python
Python 中urls.py:URL dispatcher(路由配置文件)详解
2017/03/24 Python
pycharm设置注释颜色的方法
2018/05/23 Python
python自动发送邮件脚本
2018/06/20 Python
Python中面向对象你应该知道的一下知识
2019/07/10 Python
详解Python3中的 input() 函数
2020/03/18 Python
详解python os.path.exists判断文件或文件夹是否存在
2020/11/16 Python
H5 canvas实现贪吃蛇小游戏
2017/07/28 HTML / CSS
马来西亚在线购物:POPLOOK.com
2019/12/09 全球购物
Napapijri西班牙在线商店:夹克、外套、运动衫等
2020/11/05 全球购物
校园报刊亭的创业计划书
2014/01/02 职场文书
2014三八妇女节活动总结范文四篇
2014/03/09 职场文书
2016大学生就业指导课心得体会
2016/01/15 职场文书
CSS 使用 resize 实现图片拖拽切换预览功能(强大功能)
2021/08/23 HTML / CSS
Java 实现限流器处理Rest接口请求详解流程
2021/11/02 Java/Android
JS实现刷新网页后之前浏览位置保持不变示例详解
2022/08/14 Javascript