Python实现直播推流效果


Posted in Python onNovember 26, 2019

首先给出展示结果,大体就是检测工业板子是否出现。采取检测的方法比较简单,用的OpenCV的模板检测。

Python实现直播推流效果

大体思路

  • opencv读取视频
  • 将视频分割为帧
  • 对每一帧进行处理(opencv模板匹配)
  • 在将此帧写入pipe管道
  • 利用ffmpeg进行推流直播

中间遇到的问题

在处理本地视频时,并没有延时卡顿的情况。但对实时视频流的时候,出现了卡顿延时的效果。在一顿度娘操作之后,采取了多线程的方法。

opencv读取视频

def run_opencv_camera():
 video_stream_path = 0 
 # 当video_stream_path = 0 会开启计算机 默认摄像头 也可以为本地视频文件的路径
 cap = cv2.VideoCapture(video_stream_path)

 while cap.isOpened():
 is_opened, frame = cap.read()
 cv2.imshow('frame', frame)
 cv2.waitKey(1)
 cap.release()

OpenCV模板匹配

模板匹配就是在一幅图像中寻找一个特定目标的方法之一,这种方法的原理非常简单,遍历图像中每一个可能的位置,比较各处与模板是否相似,当相似度足够高时,就认为找到了目标。

def template_match(img_rgb):
 # 灰度转换
 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
 # 模板匹配
 res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
 # 设置阈值
 threshold = 0.8
 loc = np.where(res >= threshold)
 if len(loc[0]):
 # 这里直接固定区域
 cv2.rectangle(img_rgb, (155, 515), (1810, 820), (0, 0, 255), 3)
 cv2.putText(img_rgb, category, (240, 600), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, Confidence, (240, 640), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, Precision, (240, 680), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, product_yield, (240, 720), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, result, (240, 780), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 5)
 return img_rgb

FFmpeg推流

在Ubuntu 14 上安装 Nginx-RTMP 流媒体服务器

import subprocess as sp
rtmpUrl = ""
camera_path = ""
cap = cv.VideoCapture(camera_path)
# Get video information
fps = int(cap.get(cv.CAP_PROP_FPS))
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
# ffmpeg command
command = ['ffmpeg',
 '-y',
 '-f', 'rawvideo',
 '-vcodec','rawvideo',
 '-pix_fmt', 'bgr24',
 '-s', "{}x{}".format(width, height),
 '-r', str(fps),
 '-i', '-',
 '-c:v', 'libx264',
 '-pix_fmt', 'yuv420p',
 '-preset', 'ultrafast',
 '-f', 'flv', 
 rtmpUrl]
# 管道配置
p = sp.Popen(command, stdin=sp.PIPE)
# read webcamera
while(cap.isOpened()):
 ret, frame = cap.read()
 if not ret:
 print("Opening camera is failed")
 break
 # process frame
 # your code
 # process frame
 # write to pipe
 p.stdin.write(frame.tostring())

说明:rtmp是要接受视频的服务器,服务器按照上面所给连接地址即可。

多线程处理

python mutilprocessing多进程编程 https://3water.com/article/134726.htm

def image_put(q):
 # 采取本地视频验证
 cap = cv2.VideoCapture("./new.mp4")
 # 采取视频流的方式
 # cap = cv2.VideoCapture(0)
 # cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
 # cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
 if cap.isOpened():
 print('success')
 else:
 print('faild')
 while True:
 q.put(cap.read()[1])
 q.get() if q.qsize() > 1 else time.sleep(0.01)
def image_get(q):
 while True:
 # start = time.time()
 #flag += 1
 frame = q.get()
 frame = template_match(frame)
 # end = time.time()
 # print("the time is", end-start)
 cv2.imshow("frame", frame)
 cv2.waitKey(0)
 # pipe.stdin.write(frame.tostring())
 #cv2.imwrite(save_path + "%d.jpg"%flag,frame)
# 多线程执行一个摄像头
def run_single_camera():
 # 初始化
 mp.set_start_method(method='spawn') # init
 # 队列
 queue = mp.Queue(maxsize=2)
 processes = [mp.Process(target=image_put, args=(queue, )),
   mp.Process(target=image_get, args=(queue, ))]
 [process.start() for process in processes]
 [process.join() for process in processes]
def run():
 run_single_camera() # quick, with 2 threads
 pass

说明:使用Python3自带的多线程模块mutilprocessing模块,创建一个队列,线程A从通过rstp协议从视频流中读取出每一帧,并放入队列中,线程B从队列中将图片取出,处理后进行显示。线程A如果发现队列里有两张图片,即线程B的读取速度跟不上线程A,那么线程A主动将队列里面的旧图片删掉,换新图片。

全部代码展示

import time
import multiprocessing as mp
import numpy as np
import random
import subprocess as sp
import cv2
import os
# 定义opencv所需的模板
template_path = "./high_img_template.jpg"
# 定义矩形框所要展示的变量
category = "Category: board"
var_confidence = (np.random.randint(86, 98)) / 100
Confidence = "Confidence: " + str(var_confidence)
var_precision = round(random.uniform(98, 99), 2)
Precision = "Precision: " + str(var_precision) + "%"
product_yield = "Product Yield: 100%"
result = "Result: perfect"
# 读取模板并获取模板的高度和宽度
template = cv2.imread(template_path, 0)
h, w = template.shape[:2]
# 定义模板匹配函数
def template_match(img_rgb):
 # 灰度转换
 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
 # 模板匹配
 res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
 # 设置阈值
 threshold = 0.8
 loc = np.where(res >= threshold)
 if len(loc[0]):
 # 这里直接固定区域
 cv2.rectangle(img_rgb, (155, 515), (1810, 820), (0, 0, 255), 3)
 cv2.putText(img_rgb, category, (240, 600), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, Confidence, (240, 640), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, Precision, (240, 680), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, product_yield, (240, 720), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img_rgb, result, (240, 780), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 5)
 return img_rgb
# 视频属性
size = (1920, 1080)
sizeStr = str(size[0]) + 'x' + str(size[1])
# fps = cap.get(cv2.CAP_PROP_FPS) # 30p/self
# fps = int(fps)
fps = 11
hz = int(1000.0 / fps)
print ('size:'+ sizeStr + ' fps:' + str(fps) + ' hz:' + str(hz))
rtmpUrl = 'rtmp://localhost/hls/test'
# 直播管道输出
# ffmpeg推送rtmp 重点 : 通过管道 共享数据的方式
command = ['ffmpeg',
 '-y',
 '-f', 'rawvideo',
 '-vcodec','rawvideo',
 '-pix_fmt', 'bgr24',
 '-s', sizeStr,
 '-r', str(fps),
 '-i', '-',
 '-c:v', 'libx264',
 '-pix_fmt', 'yuv420p',
 '-preset', 'ultrafast',
 '-f', 'flv',
 rtmpUrl]
#管道特性配置
# pipe = sp.Popen(command, stdout = sp.PIPE, bufsize=10**8)
pipe = sp.Popen(command, stdin=sp.PIPE) #,shell=False
# pipe.stdin.write(frame.tostring())
def image_put(q):
 # 采取本地视频验证
 cap = cv2.VideoCapture("./new.mp4")
 # 采取视频流的方式
 # cap = cv2.VideoCapture(0)
 # cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
 # cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
 if cap.isOpened():
 print('success')
 else:
 print('faild')
 while True:
 q.put(cap.read()[1])
 q.get() if q.qsize() > 1 else time.sleep(0.01)
# 采取本地视频的方式保存图片
save_path = "./res_imgs"
if os.path.exists(save_path):
 os.makedir(save_path)
def image_get(q):
 while True:
 # start = time.time()
 #flag += 1
 frame = q.get()
 frame = template_match(frame)
 # end = time.time()
 # print("the time is", end-start)
 cv2.imshow("frame", frame)
 cv2.waitKey(0)
 # pipe.stdin.write(frame.tostring())
 #cv2.imwrite(save_path + "%d.jpg"%flag,frame)
# 多线程执行一个摄像头
def run_single_camera():
 # 初始化
 mp.set_start_method(method='spawn') # init
 # 队列
 queue = mp.Queue(maxsize=2)
 processes = [mp.Process(target=image_put, args=(queue, )),
   mp.Process(target=image_get, args=(queue, ))]
 [process.start() for process in processes]
 [process.join() for process in processes]
def run():
 run_single_camera() # quick, with 2 threads
 pass
if __name__ == '__main__':
 run()

总结

以上所述是小编给大家介绍的Python实现直播推流效果,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
Python对小数进行除法运算的正确方法示例
Aug 25 Python
python批量同步web服务器代码核心程序
Sep 01 Python
python利用beautifulSoup实现爬虫
Sep 29 Python
Python中time模块和datetime模块的用法示例
Feb 28 Python
Python设计模式之抽象工厂模式
Aug 25 Python
Python实现简易端口扫描器代码实例
Mar 15 Python
python中in在list和dict中查找效率的对比分析
May 04 Python
使用Python写一个量化股票提醒系统
Aug 22 Python
python numpy元素的区间查找方法
Nov 14 Python
Python函数定义及传参方式详解(4种)
Mar 18 Python
python 计算两个列表的相关系数的实现
Aug 29 Python
python mock测试的示例
Oct 19 Python
Python利用matplotlib绘制约数个数统计图示例
Nov 26 #Python
创建Shapefile文件并写入数据的例子
Nov 26 #Python
python使用opencv在Windows下调用摄像头实现解析
Nov 26 #Python
使用Python实现 学生学籍管理系统
Nov 26 #Python
python redis 批量设置过期key过程解析
Nov 26 #Python
python3 tkinter实现添加图片和文本
Nov 26 #Python
使用Rasterio读取栅格数据的实例讲解
Nov 26 #Python
You might like
当海贼王变成JOJO风
2020/03/02 日漫
PHP使用GD库制作验证码的方法(点击验证码或看不清会刷新验证码)
2017/08/15 PHP
ThinkPHP3.2框架自定义配置和加载用法示例
2018/06/14 PHP
jQuery实现单行文字间歇向上滚动源代码
2013/06/02 Javascript
jquery ajax 简单范例(界面+后台)
2013/11/19 Javascript
JavaScript数组方法总结分析
2016/05/06 Javascript
Select下拉框模糊查询功能实现代码
2016/07/22 Javascript
基于js里调用函数时,函数名带括号和不带括号的区别
2016/07/28 Javascript
EasyUI的doCellTip实现鼠标放到单元格上提示单元格内容
2016/08/24 Javascript
angularjs实现首页轮播图效果
2017/04/14 Javascript
javascript 判断一个对象为数组的方法
2017/05/03 Javascript
从对象列表中获取一个对象的方法,依据关键字和值
2017/09/20 Javascript
vue实现手机号码抽奖上下滚动动画示例
2017/10/18 Javascript
vue 之 css module的使用方法
2018/12/04 Javascript
在Vant的基础上封装下拉日期控件的代码示例
2018/12/05 Javascript
如何从零开始手写Koa2框架
2019/03/22 Javascript
VSCode搭建Vue项目的方法
2020/04/30 Javascript
Vue基于iview table展示图片实现点击放大
2020/08/05 Javascript
vue element-ui中table合计指定列求和实例
2020/11/02 Javascript
Node.js 中如何收集和解析命令行参数
2021/01/08 Javascript
[06:25]第二届DOTA2亚洲邀请赛主赛事第二天比赛集锦.mp4
2017/04/03 DOTA
Python实现将数据库一键导出为Excel表格的实例
2016/12/30 Python
Python通过OpenCV的findContours获取轮廓并切割实例
2018/01/05 Python
Django如何防止定时任务并发浅析
2019/05/14 Python
python中的subprocess.Popen()使用详解
2019/12/25 Python
pip安装tensorflow的坑的解决
2020/04/19 Python
python 字符串的驻留机制及优缺点
2020/06/19 Python
H5页面适配iPhoneX(就是那么简单)
2019/12/02 HTML / CSS
个人承诺书
2014/03/26 职场文书
关于感恩的演讲稿500字
2014/08/26 职场文书
改革共识倡议书
2014/08/29 职场文书
2015年党风建设工作总结
2015/04/29 职场文书
漂亮妈妈观后感
2015/06/08 职场文书
Python基础之教你怎么在M1系统上使用pandas
2021/05/08 Python
Win11怎么启动任务管理器?Win11启动任务管理器的几种方法
2021/11/23 数码科技
vue中的可拖拽宽度div的实现示例
2022/04/08 Vue.js