TensorFlow实现简单的CNN的方法


Posted in Python onJuly 18, 2019

这里,我们将采用Tensor Flow内建函数实现简单的CNN,并用MNIST数据集进行测试

第1步:加载相应的库并创建计算图会话

import numpy as np
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
import matplotlib.pyplot as plt
 
#创建计算图会话
sess = tf.Session()

第2步:加载MNIST数据集,这里采用TensorFlow自带数据集,MNIST数据为28×28的图像,因此将其转化为相应二维矩阵

#数据集
data_dir = 'MNIST_data'
mnist = read_data_sets(data_dir)
 
train_xdata = np.array([np.reshape(x,[28,28]) for x in mnist.train.images] )
test_xdata = np.array([np.reshape(x,[28,28]) for x in mnist.test.images] )
 
train_labels = mnist.train.labels
test_labels = mnist.test.labels

第3步:设置模型参数

这里采用随机批量训练的方法,每训练10次对测试集进行测试,共迭代1500次,学习率采用指数下降的方式,初始学习率为0.1,每训练10次,学习率乘0.9,为了进行对比,后面会给出固定学习率为0.01的损失曲线图和准确率图

#设置模型参数
 
batch_size = 100 #批量训练图像张数
initial_learning_rate = 0.1 #学习率
global_step = tf.Variable(0, trainable=False) ;
learning_rate = tf.train.exponential_decay(initial_learning_rate,
                      global_step=global_step,
                      decay_steps=10,decay_rate=0.9)
 
evaluation_size = 500 #测试图像张数
 
image_width = 28 #图像的宽和高
image_height = 28
 
target_size = 10  #图像的目标为0~9共10个目标
num_channels = 1    #灰度图,颜色通道为1
generations = 1500  #迭代500次
evaluation_step = 10 #每训练十次进行一次测试
 
conv1_features = 25  #卷积层的特征个数
conv2_features = 50
 
max_pool_size1 = 2  #池化层大小
max_pool_size2 = 2
 
fully_connected_size = 100 #全连接层的神经元个数

第4步:声明占位符,注意这里的目标y_target类型为int32整型

#声明占位符
 
x_input_shape = [batch_size,image_width,image_height,num_channels]
x_input = tf.placeholder(tf.float32,shape=x_input_shape)
y_target = tf.placeholder(tf.int32,shape=[batch_size])
 
evaluation_input_shape = [evaluation_size,image_width,image_height,num_channels]
evaluation_input = tf.placeholder(tf.float32,shape=evaluation_input_shape)
evaluation_target = tf.placeholder(tf.int32,shape=[evaluation_size])

第5步:声明卷积层和全连接层的权重和偏置,这里采用2层卷积层和1层隐含全连接层

#声明卷积层的权重和偏置
#卷积层1
#采用滤波器为4X4滤波器,输入通道为1,输出通道为25
conv1_weight = tf.Variable(tf.truncated_normal([4,4,num_channels,conv1_features],stddev=0.1,dtype=tf.float32))
conv1_bias = tf.Variable(tf.truncated_normal([conv1_features],stddev=0.1,dtype=tf.float32))
 
#卷积层2
#采用滤波器为4X4滤波器,输入通道为25,输出通道为50
conv2_weight = tf.Variable(tf.truncated_normal([4,4,conv1_features,conv2_features],stddev=0.1,dtype=tf.float32))
conv2_bias = tf.Variable(tf.truncated_normal([conv2_features],stddev=0.1,dtype=tf.float32))
 
#声明全连接层权重和偏置
 
#卷积层过后图像的宽和高
conv_output_width = image_width // (max_pool_size1 * max_pool_size2) #//表示整除
conv_output_height = image_height // (max_pool_size1 * max_pool_size2)
 
#全连接层的输入大小
full1_input_size = conv_output_width * conv_output_height *conv2_features
 
full1_weight = tf.Variable(tf.truncated_normal([full1_input_size,fully_connected_size],stddev=0.1,dtype=tf.float32))
full1_bias = tf.Variable(tf.truncated_normal([fully_connected_size],stddev=0.1,dtype=tf.float32))
 
full2_weight = tf.Variable(tf.truncated_normal([fully_connected_size,target_size],stddev=0.1,dtype=tf.float32))
full2_bias = tf.Variable(tf.truncated_normal([target_size],stddev=0.1,dtype=tf.float32))

第6步:声明CNN模型,这里的两层卷积层均采用Conv-ReLU-MaxPool的结构,步长为[1,1,1,1],padding为SAME

全连接层隐层神经元为100个,输出层为目标个数10

def my_conv_net(input_data):
 
  #第一层:Conv-ReLU-MaxPool
  conv1 = tf.nn.conv2d(input_data,conv1_weight,strides=[1,1,1,1],padding='SAME')
  relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_bias))
  max_pool1 = tf.nn.max_pool(relu1,ksize=[1,max_pool_size1,max_pool_size1,1],strides=[1,max_pool_size1,max_pool_size1,1],padding='SAME')
 
  #第二层:Conv-ReLU-MaxPool
  conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 1, 1, 1], padding='SAME')
  relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
  max_pool2 = tf.nn.max_pool(relu2, ksize=[1, max_pool_size2, max_pool_size2, 1],
                strides=[1, max_pool_size2, max_pool_size2, 1], padding='SAME')
 
  #全连接层
  #先将数据转化为1*N的形式
  #获取数据大小
  conv_output_shape = max_pool2.get_shape().as_list()
  #全连接层输入数据大小
  fully_input_size = conv_output_shape[1]*conv_output_shape[2]*conv_output_shape[3] #这三个shape就是图像的宽高和通道数
  full1_input_data = tf.reshape(max_pool2,[conv_output_shape[0],fully_input_size])  #转化为batch_size*fully_input_size二维矩阵
  #第一层全连接
  fully_connected1 = tf.nn.relu(tf.add(tf.matmul(full1_input_data,full1_weight),full1_bias))
  #第二层全连接输出
  model_output = tf.nn.relu(tf.add(tf.matmul(fully_connected1,full2_weight),full2_bias))#shape = [batch_size,target_size]
 
  return model_output
 
model_output = my_conv_net(x_input)
test_model_output = my_conv_net(evaluation_input)

第7步:定义损失函数,这里采用softmax函数作为损失函数

#损失函数
 
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model_output,labels=y_target))

第8步:建立测评与评估函数,这里对输出层进行softmax,再通过np.argmax找出每行最大的数所在位置,再与目标值进行比对,统计准确率

#预测与评估
prediction = tf.nn.softmax(model_output)
test_prediction = tf.nn.softmax(test_model_output)
 
def get_accuracy(logits,targets):
  batch_predictions = np.argmax(logits,axis=1)#返回每行最大的数所在位置
  num_correct = np.sum(np.equal(batch_predictions,targets))
  return 100*num_correct/batch_predictions.shape[0]

第9步:初始化模型变量并创建优化器

#创建优化器
opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step = opt.minimize(loss)
 
#初始化变量
init = tf.initialize_all_variables()
sess.run(init)

第10步:随机批量训练并进行绘图

#开始训练
 
train_loss = []
train_acc = []
test_acc = []
Learning_rate_vec = []
for i in range(generations):
  rand_index = np.random.choice(len(train_xdata),size=batch_size)
  rand_x = train_xdata[rand_index]
  rand_x = np.expand_dims(rand_x,3)
  rand_y = train_labels[rand_index]
  Learning_rate_vec.append(sess.run(learning_rate, feed_dict={global_step: i}))
  train_dict = {x_input:rand_x,y_target:rand_y}
 
  sess.run(train_step,feed_dict={x_input:rand_x,y_target:rand_y,global_step:i})
  temp_train_loss = sess.run(loss,feed_dict=train_dict)
  temp_train_prediction = sess.run(prediction,feed_dict=train_dict)
  temp_train_acc = get_accuracy(temp_train_prediction,rand_y)
 
  #测试集
  if (i+1)%evaluation_step ==0:
    eval_index = np.random.choice(len(test_xdata),size=evaluation_size)
    eval_x = test_xdata[eval_index]
    eval_x = np.expand_dims(eval_x,3)
    eval_y = test_labels[eval_index]
 
 
    test_dict = {evaluation_input:eval_x,evaluation_target:eval_y}
    temp_test_preds = sess.run(test_prediction,feed_dict=test_dict)
    temp_test_acc = get_accuracy(temp_test_preds,eval_y)
 
    test_acc.append(temp_test_acc)
  train_acc.append(temp_train_acc)
  train_loss.append(temp_train_loss)
 
 
 
 
#画损失曲线
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(train_loss,'k-')
ax.set_xlabel('Generation')
ax.set_ylabel('Softmax Loss')
fig.suptitle('Softmax Loss per Generation')
 
#画准确度曲线
index = np.arange(start=1,stop=generations+1,step=evaluation_step)
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.plot(train_acc,'k-',label='Train Set Accuracy')
ax2.plot(index,test_acc,'r--',label='Test Set Accuracy')
ax2.set_xlabel('Generation')
ax2.set_ylabel('Accuracy')
fig2.suptitle('Train and Test Set Accuracy')
 
 
#画图
fig3 = plt.figure()
actuals = rand_y[0:6]
train_predictions = np.argmax(temp_train_prediction,axis=1)[0:6]
images = np.squeeze(rand_x[0:6])
Nrows = 2
Ncols =3
 
for i in range(6):
  ax3 = fig3.add_subplot(Nrows,Ncols,i+1)
  ax3.imshow(np.reshape(images[i],[28,28]),cmap='Greys_r')
  ax3.set_title('Actual: '+str(actuals[i]) +' pred: '+str(train_predictions[i]))
 
 
#画学习率
fig4 = plt.figure()
ax4 = fig4.add_subplot(111)
ax4.plot(Learning_rate_vec,'k-')
ax4.set_xlabel('step')
ax4.set_ylabel('Learning_rate')
fig4.suptitle('Learning_rate')
 
 
 
plt.show()

下面给出固定学习率图像和学习率随迭代次数下降的图像:

首先给出固定学习率图像:

下面是损失曲线

TensorFlow实现简单的CNN的方法

下面是准确率

TensorFlow实现简单的CNN的方法

我们可以看出,固定学习率损失函数下降速度较缓,同时其最终准确率为80%~90%之间就不再提高了

下面给出学习率随迭代次数降低的曲线:

首先给出学习率随迭代次数降低的损失曲线

TensorFlow实现简单的CNN的方法

然后给出相应的准确率曲线

TensorFlow实现简单的CNN的方法

我们可以看出其损失函数下降很快,同时准确率也可以达到90%以上

下面给出随机抓取的图像相应的识别情况:

TensorFlow实现简单的CNN的方法

至此我们实现了简单的CNN来实现MNIST手写图数据集的识别,如果想进一步提高其准确率,可以通过改变CNN网络参数,如通道数、全连接层神经元个数,过滤器大小,学习率,训练次数,加入dropout层等等,也可以通过增加CNN网络深度来进一步提高其准确率

下面给出一组参数:

初始学习率:initial_learning_rate=0.05

迭代步长:decay_steps=50,每50步改变一次学习率

下面是仿真结果:

TensorFlow实现简单的CNN的方法

TensorFlow实现简单的CNN的方法

TensorFlow实现简单的CNN的方法

TensorFlow实现简单的CNN的方法

我们可以看出,通过调整超参数,其既保证了损失函数能够快速下降,又进一步提高了其模型准确率,我们在训练次数为1500次的基础上,准确率已经达到97%以上。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用生成器来改写直接返回列表的函数方法
May 25 Python
Django admin美化插件suit使用示例
Dec 12 Python
手把手教你用python抢票回家过年(代码简单)
Jan 21 Python
Python实现的圆形绘制(画圆)示例
Jan 31 Python
PyQt5每天必学之组合框
Apr 20 Python
Python生成器定义与简单用法实例分析
Apr 30 Python
在Python3 numpy中mean和average的区别详解
Aug 24 Python
在OpenCV里使用特征匹配和单映射变换的代码详解
Oct 23 Python
python 实现从高分辨图像上抠取图像块
Jan 02 Python
在matplotlib中改变figure的布局和大小实例
Apr 23 Python
Keras中的多分类损失函数用法categorical_crossentropy
Jun 11 Python
使用opencv-python如何打开USB或者笔记本前置摄像头
Jun 21 Python
windows上安装python3教程以及环境变量配置详解
Jul 18 #Python
Django 开发环境配置过程详解
Jul 18 #Python
解决Django中多条件查询的问题
Jul 18 #Python
python openpyxl使用方法详解
Jul 18 #Python
Python Django基础二之URL路由系统
Jul 18 #Python
使用django的objects.filter()方法匹配多个关键字的方法
Jul 18 #Python
Django基础三之视图函数的使用方法
Jul 18 #Python
You might like
Ubuntu中搭建Nginx、PHP环境最简单的方法
2015/03/05 PHP
php面向对象之反射功能与用法分析
2017/03/29 PHP
ThinkPHP框架结合Ajax实现用户名校验功能示例
2019/07/03 PHP
最新优化收藏到网摘代码(digg,diigo)
2007/02/07 Javascript
javascript(jquery)利用函数修改全局变量的代码
2009/11/02 Javascript
Jsonp 跨域的原理以及Jquery的解决方案
2010/05/18 Javascript
jQuery实现tab标签自动切换的方法
2015/02/28 Javascript
简述AngularJS的控制器的使用
2015/06/16 Javascript
js与jQuery实现checkbox复选框全选/全不选的方法
2016/01/05 Javascript
浅析jQuery Ajax请求参数和返回数据的处理
2016/02/24 Javascript
JavaScript事件用法浅析
2016/10/31 Javascript
JS字符串长度判断,超出进行自动截取的实例(支持中文)
2017/03/06 Javascript
Javascript 严格模式use strict详解
2017/09/16 Javascript
uni-app微信小程序登录授权的实现
2020/05/22 Javascript
JQuery获得内容和属性方法解析
2020/05/30 jQuery
jQuery中event.target和this的区别详解
2020/08/13 jQuery
js实现简单的点名器随机色实例代码
2020/09/20 Javascript
python 性能优化方法小结
2017/03/31 Python
python 读入多行数据的实例
2018/04/19 Python
python matplotlib绘图,修改坐标轴刻度为文字的实例
2018/05/25 Python
对python读写文件去重、RE、set的使用详解
2018/12/11 Python
python读写csv文件方法详细总结
2019/07/05 Python
python如何处理程序无法打开
2020/06/16 Python
python按顺序重命名文件并分类转移到各个文件夹中的实现代码
2020/07/21 Python
Python爬虫设置Cookie解决网站拦截并爬取蚂蚁短租的问题
2021/02/22 Python
HTML5 本地存储和内容按需加载的思路和方法
2011/04/07 HTML / CSS
英国办公家具网站:Furniture At Work
2019/10/07 全球购物
求职简历中个人的自我评价
2013/12/01 职场文书
工程管理英文求职信
2014/03/18 职场文书
股票投资建议书
2014/05/19 职场文书
2014年党员干部四风问题自我剖析材料
2014/09/29 职场文书
党员群众路线教育实践活动剖析材料
2014/10/10 职场文书
2014年政风行风自查自纠报告
2014/10/21 职场文书
群众路线专项整治工作情况报告
2014/10/28 职场文书
如何在Mac上通过docker配置PHP开发环境
2021/05/29 PHP
Python学习之包与模块详解
2022/03/19 Python