Python利用神经网络解决非线性回归问题实例详解


Posted in Python onJuly 19, 2019

本文实例讲述了Python利用神经网络解决非线性回归问题。分享给大家供大家参考,具体如下:

问题描述

现在我们通常使用神经网络进行分类,但是有时我们也会进行回归分析。
如本文的问题:
我们知道一个生物体内的原始有毒物质的量,然后对这个生物体进行治疗,向其体内注射一个物质,过一段时间后重新测量这个生物体内有毒物质量的多少。
因此,问题中有两个输入,都是标量数据,分别为有毒物质的量和注射物质的量,一个输出,也就是注射治疗物质后一段时间生物体的有毒物质的量。
数据如下图:

Python利用神经网络解决非线性回归问题实例详解

其中Dose of Mycotoxins 就是有毒物质,Dose of QCT就是治疗的药物。
其中蓝色底纹的数字就是输出结果。

一些说明

由于本文是进行回归分析,所以最后一层不进行激活,而直接输出。
本文程序使用sigmoid函数进行激活。
本文程序要求程序有一定的可重复性,隐含层可以指定。

另外,注意到
本文将使用数据预处理,也就是将数据减去均值再除以方差,否则使用sigmoid将会导致梯度消失。
因为数据比较大,比如200,这时输入200,当sigmoid函数的梯度就是接近于0了。
与此同时,我们在每一次激活前都进行BN处理,也就是batch normalize,中文可以翻译成规范化。
否则也会导致梯度消失的问题。与预处理情况相同。

程序

程序包括两部分,一部分是模型框架,一个是训练模型

第一部分:

# coding=utf-8
import numpy as np
def basic_forard(x, w, b):
  x = x.reshape(x.shape[0], -1)
  out = np.dot(x, w) + b
  cache = (x, w, b)
  return out, cache
def basic_backward(dout, cache):
  x, w, b = cache
  dout = np.array(dout)
  dx = np.dot(dout, w.T)
  # dx = np.reshape(dx, x.shape)
  # x = x.reshape(x.shape[0], -1)
  dw = np.dot(x.T, dout)
  db = np.reshape(np.sum(dout, axis=0), b.shape)
  return dx, dw, db
def batchnorm_forward(x, gamma, beta, bn_param):
  mode = bn_param['mode']
  eps = bn_param.get('eps', 1e-5)
  momentum = bn_param.get('momentum', 0.9)
  N, D = x.shape
  running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
  running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
  out, cache = None, None
  if mode == 'train':
    sample_mean = np.mean(x, axis=0)
    sample_var = np.var(x, axis=0)
    x_hat = (x - sample_mean) / (np.sqrt(sample_var + eps))
    out = gamma * x_hat + beta
    cache = (gamma, x, sample_mean, sample_var, eps, x_hat)
    running_mean = momentum * running_mean + (1 - momentum) * sample_mean
    running_var = momentum * running_var + (1 - momentum) * sample_var
  elif mode == 'test':
    scale = gamma / (np.sqrt(running_var + eps))
    out = x * scale + (beta - running_mean * scale)
  else:
    raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
  bn_param['running_mean'] = running_mean
  bn_param['running_var'] = running_var
  return out, cache
def batchnorm_backward(dout, cache):
  gamma, x, u_b, sigma_squared_b, eps, x_hat = cache
  N = x.shape[0]
  dx_1 = gamma * dout
  dx_2_b = np.sum((x - u_b) * dx_1, axis=0)
  dx_2_a = ((sigma_squared_b + eps) ** -0.5) * dx_1
  dx_3_b = (-0.5) * ((sigma_squared_b + eps) ** -1.5) * dx_2_b
  dx_4_b = dx_3_b * 1
  dx_5_b = np.ones_like(x) / N * dx_4_b
  dx_6_b = 2 * (x - u_b) * dx_5_b
  dx_7_a = dx_6_b * 1 + dx_2_a * 1
  dx_7_b = dx_6_b * 1 + dx_2_a * 1
  dx_8_b = -1 * np.sum(dx_7_b, axis=0)
  dx_9_b = np.ones_like(x) / N * dx_8_b
  dx_10 = dx_9_b + dx_7_a
  dgamma = np.sum(x_hat * dout, axis=0)
  dbeta = np.sum(dout, axis=0)
  dx = dx_10
  return dx, dgamma, dbeta
# def relu_forward(x):
#   out = None
#   out = np.maximum(0,x)
#   cache = x
#   return out, cache
#
#
# def relu_backward(dout, cache):
#   dx, x = None, cache
#   dx = (x >= 0) * dout
#   return dx
def sigmoid_forward(x):
  x = x.reshape(x.shape[0], -1)
  out = 1 / (1 + np.exp(-1 * x))
  cache = out
  return out, cache
def sigmoid_backward(dout, cache):
  out = cache
  dx = out * (1 - out)
  dx *= dout
  return dx
def basic_sigmoid_forward(x, w, b):
  basic_out, basic_cache = basic_forard(x, w, b)
  sigmoid_out, sigmoid_cache = sigmoid_forward(basic_out)
  cache = (basic_cache, sigmoid_cache)
  return sigmoid_out, cache
# def basic_relu_forward(x, w, b):
#   basic_out, basic_cache = basic_forard(x, w, b)
#   relu_out, relu_cache = relu_forward(basic_out)
#   cache = (basic_cache, relu_cache)
#
#   return relu_out, cache
def basic_sigmoid_backward(dout, cache):
  basic_cache, sigmoid_cache = cache
  dx_sigmoid = sigmoid_backward(dout, sigmoid_cache)
  dx, dw, db = basic_backward(dx_sigmoid, basic_cache)
  return dx, dw, db
# def basic_relu_backward(dout, cache):
#   basic_cache, relu_cache = cache
#   dx_relu = relu_backward(dout, relu_cache)
#   dx, dw, db = basic_backward(dx_relu, basic_cache)
#
#   return dx, dw, db
def mean_square_error(x, y):
  x = np.ravel(x)
  loss = 0.5 * np.sum(np.square(y - x)) / x.shape[0]
  dx = (x - y).reshape(-1, 1)
  return loss, dx
class muliti_layer_net(object):
  def __init__(self, hidden_dim, input_dim=2, num_classes=2, weight_scale=0.01, dtype=np.float32, seed=None, reg=0.0, use_batchnorm=True):
    self.num_layers = 1 + len(hidden_dim)
    self.dtype = dtype
    self.reg = reg
    self.params = {}
    self.weight_scale = weight_scale
    self.use_batchnorm = use_batchnorm
    # init all parameters
    layers_dims = [input_dim] + hidden_dim + [num_classes]
    for i in range(self.num_layers):
      self.params['W' + str(i + 1)] = np.random.randn(layers_dims[i], layers_dims[i + 1]) * self.weight_scale
      self.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))
      if self.use_batchnorm and i < (self.num_layers - 1):
        self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1]))
        self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))
    self.bn_params = [] # list
    if self.use_batchnorm:
      self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]
  def loss(self, X, y=None):
    X = X.astype(self.dtype)
    mode = 'test' if y is None else 'train'
    # compute the forward data and cache
    basic_sigmoid_cache = {}
    layer_out = {}
    layer_out[0] = X
    out_basic_forward, cache_basic_forward = {}, {}
    out_bn, cache_bn = {}, {}
    out_sigmoid_forward, cache_sigmoid_forward = {}, {}
    for lay in range(self.num_layers - 1):
      # print('lay: %f' % lay)
      W = self.params['W' + str(lay + 1)]
      b = self.params['b' + str(lay + 1)]
      if self.use_batchnorm:
        gamma, beta = self.params['gamma' + str(lay + 1)], self.params['beta' + str(lay + 1)]
        out_basic_forward[lay], cache_basic_forward[lay] = basic_forard(np.array(layer_out[lay]), W, b)
        out_bn[lay], cache_bn[lay] = batchnorm_forward(np.array(out_basic_forward[lay]), gamma, beta, self.bn_params[lay])
        layer_out[lay + 1], cache_sigmoid_forward[lay] = sigmoid_forward(np.array(out_bn[lay]))
         # = out_sigmoid_forward[lay]
      else:
        layer_out[lay+1], basic_sigmoid_cache[lay] = basic_sigmoid_forward(layer_out[lay], W, b)
    score, basic_cache = basic_forard(layer_out[self.num_layers-1], self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)])
    # print('Congratulations: Loss is computed successfully!')
    if mode == 'test':
      return score
    # compute the gradient
    grads = {}
    loss, dscore = mean_square_error(score, y)
    dx, dw, db = basic_backward(dscore, basic_cache)
    grads['W' + str(self.num_layers)] = dw + self.reg * self.params['W' + str(self.num_layers)]
    grads['b' + str(self.num_layers)] = db
    loss += 0.5 * self.reg * np.sum(self.params['W' + str(self.num_layers)] * self.params['b' + str(self.num_layers)])
    dbn, dsigmoid = {}, {}
    for index in range(self.num_layers - 1):
      lay = self.num_layers - 1 - index - 1
      loss += 0.5 * self.reg * np.sum(self.params['W' + str(lay + 1)] * self.params['b' + str(lay + 1)])
      if self.use_batchnorm:
        dsigmoid[lay] = sigmoid_backward(dx, cache_sigmoid_forward[lay])
        dbn[lay], grads['gamma' + str(lay + 1)], grads['beta' + str(lay + 1)] = batchnorm_backward(dsigmoid[lay], cache_bn[lay])
        dx, grads['W' + str(lay + 1)], grads['b' + str(lay + 1)] = basic_backward(dbn[lay], cache_basic_forward[lay])
      else:
        dx, dw, db = basic_sigmoid_backward(dx, basic_sigmoid_cache[lay])
    for lay in range(self.num_layers):
      grads['W' + str(lay + 1)] += self.reg * self.params['W' + str(lay + 1)]
    return loss, grads
def sgd_momentum(w, dw, config=None):
  if config is None: config = {}
  config.setdefault('learning_rate', 1e-2)
  config.setdefault('momentum', 0.9)
  v = config.get('velocity', np.zeros_like(w))
  v = config['momentum'] * v - config['learning_rate'] * dw
  next_w = w + v
  config['velocity'] = v
  return next_w, config
class Solver(object):
  def __init__(self, model, data, **kwargs):
    self.model = model
    self.X_train = data['X_train']
    self.y_train = data['y_train']
    self.X_val = data['X_val']
    self.y_val = data['y_val']
    self.update_rule = kwargs.pop('update_rule', 'sgd_momentum')
    self.optim_config = kwargs.pop('optim_config', {})
    self.lr_decay = kwargs.pop('lr_decay', 1.0)
    self.batch_size = kwargs.pop('batch_size', 100)
    self.num_epochs = kwargs.pop('num_epochs', 10)
    self.weight_scale = kwargs.pop('weight_scale', 0.01)
    self.print_every = kwargs.pop('print_every', 10)
    self.verbose = kwargs.pop('verbose', True)
    if len(kwargs) > 0:
      extra = ', '.join('"%s"' % k for k in kwargs.keys())
      raise ValueError('Unrecognized argements %s' % extra)
    self._reset()
  def _reset(self):
    self.epoch = 100
    self.best_val_acc = 0
    self.best_params = {}
    self.loss_history = []
    self.train_acc_history = []
    self.val_acc_history = []
    self.optim_configs = {}
    for p in self.model.params:
      d = {k: v for k, v in self.optim_config.items()}
      self.optim_configs[p] = d
  def _step(self):
    loss, grads = self.model.loss(self.X_train, self.y_train)
    self.loss_history.append(loss)
    for p, w in self.model.params.items():
      dw = grads[p]
      config = self.optim_configs[p]
      next_w, next_config = sgd_momentum(w, dw, config)
      self.model.params[p] = next_w
      self.optim_configs[p] = next_config
    return loss
  def train(self):
    min_loss = 100000000
    num_train = self.X_train.shape[0]
    iterations_per_epoch = max(num_train / self.batch_size, 1)
    num_iterations = self.num_epochs * iterations_per_epoch
    for t in range(int(num_iterations)):
      loss = self._step()
      if self.verbose:
#         print(self.loss_history[-1])
        pass
      if loss < min_loss:
        min_loss = loss
        for k, v in self.model.params.items():
          self.best_params[k] = v.copy()
    self.model.params = self.best_params

第二部分

import numpy as np
# import data
dose_QCT = np.array([0, 5, 10, 20])
mean_QCT, std_QCT = np.mean(dose_QCT), np.std(dose_QCT)
dose_QCT = (dose_QCT - mean_QCT ) / std_QCT
dose_toxins = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])
mean_toxins, std_toxins = np.mean(dose_toxins), np.std(dose_toxins)
dose_toxins = (dose_toxins - mean_toxins ) / std_toxins
result = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],
          [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],
          [0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],
          [0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])
mean_result, std_result = np.mean(result), np.std(result)
result = (result - mean_result ) / std_result
# create the train data
train_x, train_y = [], []
for i,qct in enumerate(dose_QCT):
  for j,toxin in enumerate(dose_toxins):
    x = [qct, toxin]
    y = result[i, j]
    train_x.append(x)
    train_y.append(y)
train_x = np.array(train_x)
train_y = np.array(train_y)
print(train_x.shape)
print(train_y.shape)
import layers_regression
small_data = {'X_train': train_x,
       'y_train': train_y,
       'X_val': train_x,
       'y_val': train_y,}
batch_size = train_x.shape[0]
learning_rate = 0.002
reg = 0
model = layers_regression.muliti_layer_net(hidden_dim=[5,5], input_dim=2, num_classes=1, reg=reg, dtype=np.float64)
solver = layers_regression.Solver(model, small_data, print_every=0, num_epochs=50000, batch_size=batch_size, weight_scale=1,
                 update_rule='sgd_momentum', optim_config={'learning_rate': learning_rate})
print('Please wait several minutes!')
solver.train()
# print(model.params)
best_model = model
print('Train process is finised')
import matplotlib.pyplot as plt
# %matplotlib inline
plt.plot(solver.loss_history, '.')
plt.title('Training loss history')
plt.xlabel('Iteration')
plt.ylabel('Training loss')
plt.show()
# predict the training_data
predict = best_model.loss(train_x)
predict = np.round(predict * std_result + mean_result, 1)
print('Predict is ')
print('{}'.format(predict.reshape(4, 10)))
# print('{}'.format(predict))
# observe the error between the predict after training with ground truth
result = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],
          [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],
          [0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],
          [0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])
result = result.reshape(4, 10)
predict = predict.reshape(4, 10)
error = np.round(result - predict, 2)
print('error between predict and real data')
print(error)
print('The absulate error in all data is %f' % np.sum(np.abs(error)))
print('The mean error in all data is %f' % np.mean(np.abs(error)))
# figure the predict map in 3D
x_1 = (np.arange(0, 20, 0.1) - mean_QCT) / std_QCT
x_2 = (np.arange(0, 200, 1) - mean_toxins) / std_toxins
x_test = np.zeros((len(x_1)*len(x_2), 2))
index = 0
for i in range(len(x_1)):
  for j in range(len(x_2)):
    x_test[int(index), 0] = x_1[int(i)]
    x_test[int(index), 1] = x_2[int(j)]
    index += 1
test_pred = best_model.loss(x_test)
predict = np.round(test_pred * std_result + mean_result, 3)
from mpl_toolkits.mplot3d import Axes3D
x_1, x_2 = np.meshgrid(x_1 * std_QCT + mean_QCT, x_2 * std_toxins + mean_toxins)
figure = plt.figure()
ax = Axes3D(figure)
predict = predict.reshape(len(x_1), len(x_2))
ax.plot_surface(x_1, x_2, predict, rstride=1, cstride=1, cmap='rainbow')
plt.show()
# 最后本文将进行一些预测,但预测效果不是很好
# question 2: predict with given
dose_QCT_predict = np.ravel(np.array([7.5, 15]))
dose_QCT_predict_ = (dose_QCT_predict - mean_QCT)/ std_QCT
dose_toxins_predict = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])
dose_toxins_predict_ = (dose_toxins_predict - mean_toxins) / std_toxins
test = []
for i,qct in enumerate(dose_QCT_predict):
  for j,toxin in enumerate(dose_toxins_predict):
    x = [qct, toxin]
    test.append(x)
test = np.array(test)
print('Please look at the test data:')
print(test)
test = []
for i,qct in enumerate(dose_QCT_predict_):
  for j,toxin in enumerate(dose_toxins_predict_):
    x = [qct, toxin]
    test.append(x)
test = np.array(test)
test_pred = best_model.loss(test)
predict = np.round(test_pred * std_result + mean_result, 1)
print(predict.reshape(2, 10))

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python 中 Virtualenv 和 pip 的简单用法详解
Aug 18 Python
python内置函数:lambda、map、filter简单介绍
Nov 16 Python
Python利用turtle库绘制彩虹代码示例
Dec 20 Python
使用DataFrame删除行和列的实例讲解
Apr 08 Python
Python获取航线信息并且制作成图的讲解
Jan 03 Python
Python实现的银行系统模拟程序完整案例
Apr 12 Python
详解使用Python下载文件的几种方法
Oct 13 Python
Python3和pyqt5实现控件数据动态显示方式
Dec 13 Python
解析PyCharm Python运行权限问题
Jan 08 Python
keras读取h5文件load_weights、load代码操作
Jun 12 Python
使用python库xlsxwriter库来输出各种xlsx文件的示例
Sep 01 Python
python中pycryto实现数据加密
Apr 29 Python
python障碍式期权定价公式
Jul 19 #Python
python+numpy实现的基本矩阵操作示例
Jul 19 #Python
由面试题加深对Django的认识理解
Jul 19 #Python
基于Python函数和变量名解析
Jul 19 #Python
python关于矩阵重复赋值覆盖问题的解决方法
Jul 19 #Python
对Python生成器、装饰器、递归的使用详解
Jul 19 #Python
django中SMTP发送邮件配置详解
Jul 19 #Python
You might like
玩转虚拟域名◎+ .
2006/10/09 PHP
php对mongodb的扩展(初出茅庐)
2012/11/11 PHP
php定时计划任务的实现方法详解
2013/06/06 PHP
Zend Framework入门教程之Zend_View组件用法示例
2016/12/09 PHP
PHP程序员学习使用Swoole的理由
2018/06/24 PHP
JQuery 无废话系列教程(二) jquery实战篇上
2009/06/23 Javascript
js动态添加onload、onresize、onscroll事件(另类方法)
2012/12/26 Javascript
JS如何将UTC格式时间转本地格式
2013/09/04 Javascript
CSS3,HTML5和jQuery搜索框集锦
2014/12/02 Javascript
js中window.open的参数及注意注意事项
2016/07/06 Javascript
微信小程序 解决请求服务器手机预览请求不到数据的方法
2017/01/04 Javascript
JavaScript实现二分查找实例代码
2017/02/22 Javascript
Vue实现自带的过滤器实例
2017/03/09 Javascript
详解webpack打包vue时提取css
2017/05/26 Javascript
js代码规范之Eslint安装与配置详解
2018/09/08 Javascript
在vue中根据光标的显示与消失实现下拉列表
2019/09/29 Javascript
[48:24]完美世界DOTA2联赛PWL S3 Forest vs INK ICE 第一场 12.09
2020/12/12 DOTA
python回调函数的使用方法
2014/01/23 Python
python图像处理之反色实现方法
2015/05/30 Python
Python数据类型详解(二)列表
2016/05/08 Python
利用python程序帮大家清理windows垃圾
2017/01/15 Python
django框架使用orm实现批量更新数据的方法
2019/06/21 Python
python BeautifulSoup库的安装与使用
2020/12/17 Python
python re.match()用法相关示例
2021/01/27 Python
CSS3 边框效果
2019/11/04 HTML / CSS
爱普生美国官网:Epson美国
2018/11/05 全球购物
Unineed旗下时尚轻奢网站:FABHunt
2019/05/13 全球购物
广告学专业自荐信范文
2014/02/24 职场文书
销售经理岗位职责
2014/03/16 职场文书
小学生作文评语
2014/04/18 职场文书
大学生党员自我批评思想汇报
2014/10/10 职场文书
军训通讯稿范文
2015/07/18 职场文书
评估“风险”创业计划的几大要点
2019/08/12 职场文书
SQL实现LeetCode(176.第二高薪水)
2021/08/04 MySQL
Python安装及建立虚拟环境的完整步骤
2022/06/25 Servers
设置IIS Express并发数
2022/07/07 Servers