Python爬虫爬取全球疫情数据并存储到mysql数据库的步骤

思路:使用Python爬虫对腾讯疫情网站世界疫情数据进行爬取,封装成一个函数返回一个字典数据格式的对象,写另一个方法调用该函数接收返回值,和数据库取得连接后把数据存储到mysql数据库。

Posted in Python onMarch 29, 2021

一、mysql数据库建表

CREATE TABLE world(
 id INT(11) NOT NULL AUTO_INCREMENT,
 dt DATETIME NOT NULL COMMENT '日期',
 c_name VARCHAR(35) DEFAULT NULL COMMENT '国家',
 continent VARCHAR(35) DEFAULT NULL COMMENT '所属大洲',
 nowConfirm INT(11) DEFAULT NULL COMMENT '累计确诊',
 confirm INT(11) DEFAULT NULL COMMENT '当日现存确诊',
 confirmAdd INT(11) DEFAULT NULL COMMENT '当日新增确诊',
 suspect INT(11) DEFAULT NULL COMMENT '剩余疑似',
 heal INT(11) DEFAULT NULL COMMENT '累计治愈',
 dead INT(11) DEFAULT NULL COMMENT '累计死亡',
 confirmAddCut INT(11) DEFAULT NULL COMMENT 'confirmAddCut',
 confirmCompare INT(11) DEFAULT NULL COMMENT 'confirmCompare',
 nowConfirmCompare INT(11) DEFAULT NULL COMMENT 'nowConfirmCompare',
 healCompare INT(11) DEFAULT NULL COMMENT 'healCompare',
 deadCompare INT(11) DEFAULT NULL COMMENT 'deadCompare',
 PRIMARY KEY(id)
)ENGINE=INNODB DEFAULT CHARSET=utf8mb4;

注意建立的表,数据的名字,数据的长度,数据的类型,主键的定义一定要小心仔细。

这里博主出现了几个小错误:

①数据表的主键不可以设置为日期,因为在之后爬取数据之后可以看到,网站给的数据是同一天的,因为主键不可以有重复,所以相同的日期是不可以作为主键定义的。

②设置int类型的id作为数据表的主键,那么存在一个问题,在往表里插入数据的时候,id位置的数据值需要考虑,这个方法可以解决:可以在传值的时候把id的值设定为 0,前提是id是自增的,这样数据库是可以自己处理id的,依然是从0开始自增,这样避免了不给id传值导致Null的异常。

③博主使用的mysql可视化工具默认在一个页面显示30条记录,在右上角可以改变显示的记录数,因为本次插入的是185条数据,所以在插入完之后如果发现数据不对,可以看看可视化工具是不是有什么设置导致的。

二、下面直接上代码(爬虫方法)

"""
获取全球疫情数据
"""
def get_world_data():
 url='https://api.inews.qq.com/newsqa/v1/automation/foreign/country/ranklist'
 headers={'user-agent': 'WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36'}
 # 创建会话对象
 # session = requests.session()
 # 请求接口
 # result = session.get('https://api.inews.qq.com/newsqa/v1/automation/foreign/country/ranklist')
 # 打印结果
 # print(result.text)
 res = requests.get(url, headers=headers)
 # print(res.text)
 response_data_0 = json.loads(res.text.replace('jQuery34102848205531413024_1584924641755(', '')[:-1]) #转化json对象
 # print(response_data_0.keys())
 # print(response_data_0)
 response_data_1=response_data_0['data']
 # print(response_data_1)
 # print(response_data_1[0].keys())
 # data = jsonpath.jsonpath(resJson_1, '$.data.*')
 # print(resJson_1.keys())
 # for d in data:
 # res = '日期:' + d['date'] + '--' + d['continent'] + '--' + d['name'] + '--' + '新增确诊:' + str(
 # d['confirmAdd']) + '累计确诊:' + str(d['confirm']) + '治愈:' + str(d['heal']) + '死亡:' + str(d['dead'])
 # file = r'C:/Users/Administrator/Desktop/world_data.txt'
 # with open(file, 'w+', encoding='utf-8') as f:
 # f.write(res + '\n') # 加\n换行显示
 # f.close()
 world={}
 for i in response_data_1:
 temp=i['y']+'.'+i['date']
 tup = time.strptime(temp, '%Y.%m.%d')
 dt = time.strftime('%Y-%m-%d', tup) # 改变时间格式,插入数据库 日期
 # print(ds)
 c_name=i['name'] #国家
 continent=i['continent'] #所属大洲
 nowConfirm=i['nowConfirm'] #现有确诊
 confirm=i['confirm'] #累计确诊
 confirmAdd=i['confirmAdd'] #新增确诊
 suspect=i['suspect'] #现有疑似
 heal=i['heal'] #累计治愈
 dead=i['dead'] #累计死亡
 confirmAddCut=i['confirmAddCut']
 confirmCompare=i['confirmCompare']
 nowConfirmCompare=i['nowConfirmCompare']
 healCompare=i['healCompare']
 deadCompare=i['deadCompare']
 world[c_name] = {'dt':dt ,
  'continent': continent,
  'nowConfirm': nowConfirm,
  'confirm': confirm,
  'confirmAdd': confirmAdd,
  'suspect': suspect,
  'heal': heal,
  'dead': dead,
  'confirmAddCut': confirmAddCut,
  'confirmCompare': confirmCompare,
  'nowConfirmCompare': nowConfirmCompare,
  'healCompare': healCompare,
  'deadCompare': deadCompare,
  }
 return world

三、插入数据库

def insert_world():
 """
 更新 world 表
 :return:
 """
 cursor = None
 conn = None
 try:
 dic = get_world_data()
 print(dic)
 conn, cursor = get_conn()
 sql = "insert into world values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"
 sql_query = 'select %s=(select dt from world order by id desc limit 1)' #对比当前最大时间戳
 cursor.execute(sql_query,dic['美国']['dt'])
 if not cursor.fetchone()[0]:
 print(f"{time.asctime()}开始插入世界数据")
 for k, v in dic.items(): # item 格式 {'2021-01-13': {'confirm': 41, 'suspect': 0, 'heal': 0, 'dead': 1}
 cursor.execute(sql, [0,v.get('dt'), k, v.get("continent"), v.get("nowConfirm"),
  v.get("confirm"), v.get("confirmAdd"),v.get("suspect"),v.get("heal"), v.get("dead")
  , v.get("confirmAddCut"), v.get("confirmCompare"), v.get("nowConfirmCompare"), v.get("healCompare"),
 v.get("deadCompare")])
 conn.commit() # 提交事务
 print(f"{time.asctime()}插入世界数据完毕")
 else:
 print(f"{time.asctime()}世界数据已是最新数据!")
 except:
 traceback.print_exc()
 finally:
 close_conn(conn, cursor)

总结一下在完成这两个方法的过程中遇到的问题,首先是最基础的问题,数据的类型和格式的转换,这里主要是指json字符串和Python里对应的数据对象(list和字典)。

(1)一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值。内容一般分为三部分,结构化的数据、半结构化的数据和非机构化数据。

1.结构化数据:可以用统一的结构加以表示的数据。可以使用关系型数据库表示和存储,表现为二维形式的数据,一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行的数据的属性是相同的。

2.半结构化数据:结构化数据的一种形式,并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此他也被成为自描述的结构。常见的半结构数据有:html,xml和json等、

实际上是以树或者图的结构来存储的。对于半结构化数据,节点中属性的顺序是不重要的,不同的半结构化数据的属性的个数是不一样的。这样的数据格式,可以自由的表达很多有用的信息,包含自描述信息。所以半结构化数据的扩展性很好,特别适合于在互联网中大规模传播。

3.非结构化数据: 就是没有固定的结构。各种文档,图片,视频或者音频都属于非结构化数据。对于这类数据,我们一般直接整体进行存储,而且一般存储为二进制形式。

json数据      

json(JavaScript Object Notation,JS对象标记)是一种轻量级的数据交换格式。基于ECMAScript(w3c制定的JS规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得JSON成为理想的数据交换语言。

特点:易于阅读、易于机器生成、有效提升网络速度。       

JSON语法规则:

在JS语言中,一切都是对象。因此,任何支持的类型都可以通过json来表示。

例如字符串、数字,对象,数组。
Js中对象和数组是比较特殊并且常用的两种类型:

  • 对象表示为键值对{name:'zhangsan',age:'7'}
  • 数据有逗号分隔[1,2,3,4,5]
  • 花括号保存对象
  • 方括号保存数组。

js的对象就相当于python中的字典,js的数组就相当于Python中的列表, 因为json用来存储js的对象或者数组,所以在Python中我们可以将json转化为list或者dict。

解析json的包json:

  • json.dumps(python的list或者dict)---->(返回值)---->json字符串。
  • json.loads(json字符串)------>(返回值)----->python的list或者dict.
  • json.dump(list/dict,fp)—>list,或者字典保存到json文件中。
  • json.load(fp)—>list/dict:从json文件中读出json数据。

json键值对是用来保存js对象的一种方式,和js对象的写法页大同小异,比如:

{“firstName”:“Json”,“Class”:“aid1111”}

等价于下面这条js语句:

{firstName:“Json”,Class:“aid1111”}。

很多人搞不清楚json和js对象的关系,甚至谁是谁都不清楚。其实可以这么理解:

【JSON是JS对象的字符串表达式,他使用文本形式表示一个JS对象的信息,本质是一个字符串。】

var obj = {a:“hello”,b:“World”}

这是一个js对象。注意,键名也是可以用引号包裹的

var json = ' {“a”:“hello”,“b”:“World”}'

这是一个json字符串,本质上是一个字符串。

JSON作为数据包格式传输的时候具有更高的效率,这是因为JSON不想xml那样具有严格的闭合标签,这就让有效数据量与总数据包比大大提升,从而减少同等数据流量的情况下,网络的传输的压力大大减低。

 

这是中国的疫情数据,注意箭头指的地方,这里的data对应的key是字典

Python爬虫爬取全球疫情数据并存储到mysql数据库的步骤

这是全球疫情,注意这里data对应的是list

Python爬虫爬取全球疫情数据并存储到mysql数据库的步骤

数据的格式非常重要,因为在后续需要把网页爬取的数据接受之后,还要把数据导入数据库,所以中间数据的格式必须清楚,

比如list类型的可以通过下标去访问,而字典只可以通过name来访问,字典是不提供索引的,所以不可以通过下标访问。还

有就是数据库里的日期格式一定要注意转换再插入。

四、总结一下爬取数据的步骤:

(1)首先需要导入需要的包:

import requests
import pymysql
import time
import json
import traceback

(2)通过request向被爬取网站的url发起一个请求(如果网站有反爬取手段,需要在请求里加上headers)
获取headers:

到指定网站,浏览器按F12,之后在网络那一个选项里可以看到。

Python爬虫爬取全球疫情数据并存储到mysql数据库的步骤

 (3)获取和解析数据

url='https://api.inews.qq.com/newsqa/v1/automation/foreign/country/ranklist'
headers={'user-agent': 'WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36'}
 
res = requests.get(url, headers=headers)
# print(res.text)
response_data_0 = json.loads(res.text.replace('jQuery34102848205531413024_1584924641755(', '')[:-1]) #转化json对象

这里进行了第一步解析,通过json.loads( ) 方法把从网页获取的json字符串数据转化成Python对应的list或者字典。

如果第一步解析之后data对应的value不是list,那么可以进行第二次解析,本次操作中,世界疫情数据的data对

应的数据是一个list,所以也就不需要进行第二次转化,可以直接通过list的下标去访问。

数据转化是必要的,在网络中json字符串传递小巧安全速度快,但是我们读取数据,如果直接对字符串进行操作

会非常不方便,所以我们需要解析json字符串,也就是通过json.loads()方法把字符串转化成Python对应的list或

者字典对象,这样我们访问操作这些数据会变得简单。

Python 相关文章推荐
Python通过PIL获取图片主要颜色并和颜色库进行对比的方法
Mar 19 Python
使用Python设置tmpfs来加速项目的教程
Apr 17 Python
Python实现将绝对URL替换成相对URL的方法
Jun 28 Python
Python中类型检查的详细介绍
Feb 13 Python
python十进制和二进制的转换方法(含浮点数)
Jul 07 Python
Python实现的KMeans聚类算法实例分析
Dec 29 Python
利用Django提供的ModelForm增删改数据的方法
Jan 06 Python
Python 代码调试技巧示例代码
Aug 11 Python
详解python百行有效代码实现汉诺塔小游戏(简约版)
Oct 30 Python
python反爬虫方法的优缺点分析
Nov 25 Python
详解Python爬虫爬取博客园问题列表所有的问题
Jan 18 Python
Django框架中视图的用法
Jun 10 Python
Python爬虫数据的分类及json数据使用小结
Mar 29 #Python
python re模块和正则表达式
Mar 24 #Python
opencv实现图像几何变换
PyQt QMainWindow的使用示例
Mar 24 #Python
PyQt 如何创建自定义QWidget
Mar 24 #Python
解决python 输出到csv 出现多空行的情况
opencv实现图像平移效果
You might like
dedecms模板标签代码官方参考
2007/03/17 PHP
php 调用远程url的六种方法小结
2009/11/02 PHP
php的array_multisort()使用方法介绍
2012/05/16 PHP
PHP实现基于mysqli的Model基类完整实例
2016/04/08 PHP
Firefox+FireBug使JQuery的学习更加轻松愉快
2010/01/01 Javascript
JS DOM 操作实现代码
2010/08/01 Javascript
Jquery中使用setInterval和setTimeout的方法
2013/04/08 Javascript
jQuery计算textarea中文字数(剩余个数)的小程序
2013/11/28 Javascript
JS中getYear()和getFullYear()区别分析
2014/07/04 Javascript
轻松创建nodejs服务器(9):实现非阻塞操作
2014/12/18 NodeJs
nodejs爬虫抓取数据之编码问题
2015/07/03 NodeJs
JavaScript检测上传文件大小的方法
2015/07/22 Javascript
js实现简单的联动菜单效果
2015/08/19 Javascript
jQuery简单实现input文本框内灰色提示文本效果的方法
2015/12/02 Javascript
JS常见创建类的方法小结【工厂方式,构造器方式,原型方式,联合方式等】
2017/04/01 Javascript
原生JS实现循环Nodelist Dom列表的4种方式示例
2018/02/11 Javascript
JS实现运动缓冲效果的封装函数示例
2018/02/18 Javascript
vue实现codemirror代码编辑器中的SQL代码格式化功能
2019/08/27 Javascript
jQuery 选择器用法实例分析【prev + next】
2020/05/22 jQuery
JavaScript实现五子棋小游戏
2020/10/26 Javascript
ubuntu 18.04搭建python环境(pycharm+anaconda)
2019/06/14 Python
在tensorflow中实现去除不足一个batch的数据
2020/01/20 Python
利用python在excel中画图的实现方法
2020/03/17 Python
如何查看Django ORM执行的SQL语句的实现
2020/04/20 Python
django queryset相加和筛选教程
2020/05/18 Python
python 基于opencv 实现一个鼠标绘图小程序
2020/12/11 Python
解决img标签上下出现间隙的方法
2016/12/14 HTML / CSS
使用phonegap播放音频的实现方法
2017/03/31 HTML / CSS
入党申请人的自我鉴定
2013/12/01 职场文书
全神贯注教学反思
2014/02/03 职场文书
客户经理竞聘演讲稿
2014/05/15 职场文书
2014年班干部工作总结
2014/11/25 职场文书
一年级语文上册复习计划
2015/01/17 职场文书
战马观后感
2015/06/08 职场文书
拒绝盗图!教你怎么用python给图片加水印
2021/06/04 Python
Spring Bean的实例化之属性注入源码剖析过程
2021/06/13 Java/Android