Python图像识别+KNN求解数独的实现


Posted in Python onNovember 13, 2020

Python-opencv+KNN求解数独

最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。

整体思路大概就是识别出图中数字生成list,然后求解。

输入输出demo

数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示:

Python图像识别+KNN求解数独的实现

经过程序求解后,得到的结果如下图所示:

Python图像识别+KNN求解数独的实现

程序具体流程

程序整体流程如下图所示:

Python图像识别+KNN求解数独的实现

读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字;无数字信息的在list中置0;生成未求解数独list,之后求解数独,将信息在原图中显示出来。

# -*-coding:utf-8-*-
import os
import cv2 as cv
import numpy as np
import time

####################################################
#寻找数字生成list
def find_dig_(img, train_set):
  if img is None:
    print("无效的图片!")
    os._exit(0)
    return
  _, thre = cv.threshold(img, 230, 250, cv.THRESH_BINARY_INV)
  _, contours, hierarchy = cv.findContours(thre, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
  sudoku_list = []
  boxes = []
  for i in range(len(hierarchy[0])):
    if hierarchy[0][i][3] == 0: # 表示父轮廓为 0
      boxes.append(hierarchy[0][i])
  # 提取数字
  nm = []
  for j in range(len(boxes)):  # 此处len(boxes)=81
    if boxes[j][2] != -1:
      x, y, w, h = cv.boundingRect(contours[boxes[j][2]])
      nm.append([x, y, w, h])
      # 在原图中框选各个数字
      cropped = img[y:y + h, x:x + w]
      im = img_pre(cropped)			#预处理
      AF = incise(im)				#切割数字图像
      result = identification(train_set, AF, 7)		#knn识别
      sudoku_list.insert(0, int(result))				#生成list
    else:
      sudoku_list.insert(0, 0)
      
  if len(sudoku_list) == 81:
    sudoku_list= np.array(sudoku_list)
    sudoku_list= sudoku_list.reshape((9, 9))
    print("old_sudoku -> \n", sudoku_list)
    return sudoku_list, contours, hierarchy
  else:
    print("无效的图片!")
    os._exit(0)

######################################################
#KNN算法识别数字
def img_pre(cropped):
  # 预处理数字图像
  im = np.array(cropped) # 转化为二维数组
  for i in range(im.shape[0]): # 转化为二值矩阵
    for j in range(im.shape[1]):
      # print(im[i, j])
      if im[i, j] != 255:
        im[i, j] = 1
      else:
        im[i, j] = 0
  return im


# 提取图片特征
def feature(A):
  midx = int(A.shape[1] / 2) + 1
  midy = int(A.shape[0] / 2) + 1
  A1 = A[0:midy, 0:midx].mean()
  A2 = A[midy:A.shape[0], 0:midx].mean()
  A3 = A[0:midy, midx:A.shape[1]].mean()
  A4 = A[midy:A.shape[0], midx:A.shape[1]].mean()
  A5 = A.mean()
  AF = [A1, A2, A3, A4, A5]
  return AF


# 切割图片并返回每个子图片特征
def incise(im):
  # 竖直切割并返回切割的坐标
  a = [];
  b = []
  if any(im[:, 0] == 1):
    a.append(0)
  for i in range(im.shape[1] - 1):
    if all(im[:, i] == 0) and any(im[:, i + 1] == 1):
      a.append(i + 1)
    elif any(im[:, i] == 1) and all(im[:, i + 1] == 0):
      b.append(i + 1)
  if any(im[:, im.shape[1] - 1] == 1):
    b.append(im.shape[1])
  # 水平切割并返回分割图片特征
  names = locals();
  AF = []
  for i in range(len(a)):
    names['na%s' % i] = im[:, range(a[i], b[i])]
    if any(names['na%s' % i][0, :] == 1):
      c = 0
    else:
      for j in range(names['na%s' % i].shape[0]):
        if j < names['na%s' % i].shape[0] - 1:
          if all(names['na%s' % i][j, :] == 0) and any(names['na%s' % i][j + 1, :] == 1):
            c = j
            break
        else:
          c = j
    if any(names['na%s' % i][names['na%s' % i].shape[0] - 1, :] == 1):
      d = names['na%s' % i].shape[0] - 1
    else:
      for j in range(names['na%s' % i].shape[0]):
        if j < names['na%s' % i].shape[0] - 1:
          if any(names['na%s' % i][j, :] == 1) and all(names['na%s' % i][j + 1, :] == 0):
            d = j + 1
            break
        else:
          d = j
    names['na%s' % i] = names['na%s' % i][range(c, d), :]
    AF.append(feature(names['na%s' % i])) # 提取特征
    for j in names['na%s' % i]:
      pass
  return AF


# 训练已知图片的特征
def training():
  train_set = {}
  for i in range(9):
    value = []
    for j in range(15):
      ima = cv.imread('E:/test_image/knn_test/{}/{}.png'.format(i + 1, j + 1), 0)
      im = img_pre(ima)
      AF = incise(im)
      value.append(AF[0])
    train_set[i + 1] = value

  return train_set


# 计算两向量的距离
def distance(v1, v2):
  vector1 = np.array(v1)
  vector2 = np.array(v2)
  Vector = (vector1 - vector2) ** 2
  distance = Vector.sum() ** 0.5
  return distance


# 用最近邻算法识别单个数字
def knn(train_set, V, k):
  key_sort = [11] * k
  value_sort = [11] * k
  for key in range(1, 10):
    for value in train_set[key]:
      d = distance(V, value)
      for i in range(k):
        if d < value_sort[i]:
          for j in range(k - 2, i - 1, -1):
            key_sort[j + 1] = key_sort[j]
            value_sort[j + 1] = value_sort[j]
          key_sort[i] = key
          value_sort[i] = d
          break
  max_key_count = -1
  key_set = set(key_sort)
  for key in key_set:
    if max_key_count < key_sort.count(key):
      max_key_count = key_sort.count(key)
      max_key = key
  return max_key


# 生成数字
def identification(train_set, AF, k):
  result = ''
  for i in AF:
    key = knn(train_set, i, k)
    result = result + str(key)
  return result



######################################################
######################################################
#求解数独
def get_next(m, x, y):
  # 获得下一个空白格在数独中的坐标。
  :param m 数独矩阵
  :param x 空白格行数
  :param y 空白格列数
  """
  for next_y in range(y + 1, 9): # 下一个空白格和当前格在一行的情况
    if m[x][next_y] == 0:
      return x, next_y
  for next_x in range(x + 1, 9): # 下一个空白格和当前格不在一行的情况
    for next_y in range(0, 9):
      if m[next_x][next_y] == 0:
        return next_x, next_y
  return -1, -1 # 若不存在下一个空白格,则返回 -1,-1


def value(m, x, y):
  # 返回符合"每个横排和竖排以及九宫格内无相同数字"这个条件的有效值。
 
  i, j = x // 3, y // 3
  grid = [m[i * 3 + r][j * 3 + c] for r in range(3) for c in range(3)]
  v = set([x for x in range(1, 10)]) - set(grid) - set(m[x]) - \
    set(list(zip(*m))[y])
  return list(v)


def start_pos(m):
  # 返回第一个空白格的位置坐标
  for x in range(9):
    for y in range(9):
      if m[x][y] == 0:
        return x, y
  return False, False # 若数独已完成,则返回 False, False


def try_sudoku(m, x, y):
  # 试着填写数独
  for v in value(m, x, y):
    m[x][y] = v
    next_x, next_y = get_next(m, x, y)
    if next_y == -1: # 如果无下一个空白格
      return True
    else:
      end = try_sudoku(m, next_x, next_y) # 递归
      if end:
        return True
      m[x][y] = 0 # 在递归的过程中,如果数独没有解开,
      # 则回溯到上一个空白格


def sudoku_so(m):
  x, y = start_pos(m)
  try_sudoku(m, x, y)
  print("new_sudoku -> \n", m)
  return m

###################################################
# 将结果绘制到原图
def draw_answer(img, contours, hierarchy, new_sudoku_list ):
  new_sudoku_list = new_sudoku_list .flatten().tolist()
  for i in range(len(contours)):
    cnt = contours[i]
    if hierarchy[0, i, -1] == 0:
      num = new_soduku_list.pop(-1)
      if hierarchy[0, i, 2] == -1:
        x, y, w, h = cv.boundingRect(cnt)
        cv.putText(img, "%d" % num, (x + 19, y + 56), cv.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 2) # 填写数字
  cv.imwrite("E:/answer.png", img)


if __name__ == '__main__':
  t1 = time.time()
  train_set = training()
  img = cv.imread('E:/test_image/python_test_img/Sudoku.png')
  img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
  sudoku_list, contours, hierarchy = find_dig_(img_gray, train_set)
  new_sudoku_list = sudoku_so(sudoku_list)
  draw_answer(img, contours, hierarchy, new_sudoku_list )
  print("time :",time.time()-t1)

PS:

使用KNN算法需要创建训练集,数独中共涉及9个数字,“1,2,3,4,5,6,7,8,9”各15幅图放入文件夹中,如下图所示。

Python图像识别+KNN求解数独的实现

到此这篇关于Python图像识别+KNN求解数独的实现的文章就介绍到这了,更多相关Python KNN求解数独内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python编程中装饰器的使用示例解析
Jun 20 Python
python实现二叉查找树实例代码
Feb 08 Python
Python实现修改文件内容的方法分析
Mar 25 Python
对python中raw_input()和input()的用法详解
Apr 22 Python
python判断输入日期为第几天的实例
Nov 13 Python
python使用matplotlib画柱状图、散点图
Mar 18 Python
Opencv+Python实现图像运动模糊和高斯模糊的示例
Apr 11 Python
python BlockingScheduler定时任务及其他方式的实现
Sep 19 Python
python代码xml转txt实例
Mar 10 Python
Jupyter Notebook添加代码自动补全功能的实现
Jan 07 Python
python用700行代码实现http客户端
Jan 14 Python
Python 实现Mac 屏幕截图详解
Oct 05 Python
Django正则URL匹配实现流程解析
Nov 13 #Python
Django框架请求生命周期实现原理
Nov 13 #Python
python在地图上画比例的实例详解
Nov 13 #Python
python语言实现贪吃蛇游戏
Nov 13 #Python
Python使用struct处理二进制(pack和unpack用法)
Nov 12 #Python
python切割图片的示例
Nov 12 #Python
教你使用Sublime text3搭建Python开发环境及常用插件安装另分享Sublime text3最新激活注册码
Nov 12 #Python
You might like
PHP 存储文本换行实现方法
2010/01/05 PHP
PHP输出时间差函数代码
2013/01/28 PHP
Laravel 5框架学习之子视图和表单复用
2015/04/09 PHP
PHP全局使用Laravel辅助函数dd
2019/12/26 PHP
jquery 元素相对定位代码
2010/10/15 Javascript
JS window对象的top、parent、opener含义介绍
2013/12/03 Javascript
JS图片无缝、平滑滚动代码
2014/03/11 Javascript
JavaScript闭包实例讲解
2014/04/22 Javascript
使用JQuery库提供的扩展功能实现自定义方法
2014/09/09 Javascript
JavaScript简单判断复选框是否选中及取出值的方法
2015/08/13 Javascript
jquery限定文本框只能输入数字(整数和小数)
2016/01/08 Javascript
实例详解ECMAScript5中新增的Array方法
2016/04/05 Javascript
JS判断浏览器是否安装flash插件的简单方法
2016/09/13 Javascript
jQuery插件HighCharts实现的2D对数饼图效果示例【附demo源码下载】
2017/03/09 Javascript
jQuery模拟实现天猫购物车动画效果实例代码
2017/05/25 jQuery
js学习总结之DOM2兼容处理顺序问题的解决方法
2017/07/27 Javascript
浅谈关于iview表单验证的问题
2018/09/29 Javascript
JS中创建自定义类型的常用模式总结【工厂模式,构造函数模式,原型模式,动态原型模式等】
2019/01/19 Javascript
Jquery使用each函数实现遍历及数组处理
2020/07/14 jQuery
Python实现树莓派WiFi断线自动重连的实例代码
2017/03/16 Python
Python OpenCV对本地视频文件进行分帧保存的实例
2019/01/08 Python
Flask框架工厂函数用法实例分析
2019/05/25 Python
浅谈Keras的Sequential与PyTorch的Sequential的区别
2020/06/17 Python
Python实现哲学家就餐问题实例代码
2020/11/09 Python
HTML5之HTML元素扩展(下)—增强的Form表单元素值得关注
2013/01/31 HTML / CSS
国际鲜花速递专家:Floraqueen
2016/11/24 全球购物
印尼极简主义和实惠的在线家具店:Fabelio
2019/03/27 全球购物
美国家居装饰网上商店:Lulu & Georgia
2019/09/14 全球购物
巴西葡萄酒商店:Divvino
2020/02/22 全球购物
在C语言中"指针和数组等价"到底是什么意思?
2014/03/24 面试题
质量安全标语
2014/06/07 职场文书
11.9消防日宣传标语
2014/10/08 职场文书
八年级上册语文教学计划
2015/01/22 职场文书
辞职信格式模板
2015/02/27 职场文书
2015年采购部工作总结
2015/04/23 职场文书
学生会宣传部竞选稿
2015/11/21 职场文书