基于OpenCV的路面质量检测的实现


Posted in Python onNovember 04, 2020

本期我们将展示一种对路面类型和质量进行分类的方法及其步骤。为了测试这种方法,我们使用了我们制作的RTK数据集。

基于OpenCV的路面质量检测的实现

路面分类

该数据集[1]包含用低成本相机拍摄的图像,以及新兴国家常见的场景,其中包含未铺砌的道路和坑洼。路面类型是有关人或自动驾驶车辆应如何驾驶的重要信息。除了乘客舒适度和车辆维护以外,它还涉及每个人的安全。我们可以通过[2]中的简单卷积神经网络(CNN)结构来实现。

基于OpenCV的路面质量检测的实现

在这种方法中,我们对表面类型分类任务使用特定的模型,我们将其定义为以下类别:沥青,已铺设(用于所有其他类型的路面)和未铺设。对于表面质量,我们使用其他三种不同的模型,每种类型的表面都使用一种。这四个模型都具有相同的结构。我们从第一个模型中得出结果,并称为特定质量模型。

在CNN结构之前,将感兴趣区域(ROI)定义为每个输入帧的预处理步骤。毕竟,我们不需要整个图像来对道路进行分类。ROI旨在仅保留图像中实际包含道路像素的部分。图像的上半部分以及图像底部的一小部分都将被丢弃,因为在某些帧中,它可能包含负责捕获图像的部分车辆。ROI采用硬编码,因为如果我们使用自适应ROI,它可能会导致失败并损害模型训练。

基于OpenCV的路面质量检测的实现

在此预处理之后执行数据扩充步骤。数据增强包括增加和减少每帧的亮度。这样,我们可以改进训练输入集,并帮助我们的系统学习识别具有不同照明条件的相同类型和质量的道路。

最后,将输入图像传递到包含三个卷积层和两个完全连接层的CNN结构。

基于OpenCV的路面质量检测的实现

01.RTK数据集

数据集包含具有不同类型的表面和质量的图像。

基于OpenCV的路面质量检测的实现

可从以下位置下载RTK数据集:

http://www.lapix.ufsc.br/pesquisas/projeto-veiculo-autonomo/datasets/?lang=zh-CN

02.路面类型分类

我们使用了Python,TensorFlow和OpenCV。

让我们逐步分析一下…

首先,我们需要建立表面类型分类模型。为此,您将需要准备数据以训练模型。您可以使用RTK数据集中的图像或制作自己的图像。图像需要按地面道路类型进行组织。

基于OpenCV的路面质量检测的实现

训练数据文件夹结构

在我们的实验中,我们使用了6264帧:

l铺砌(沥青):4344,用于柏油马路。

l铺砌的(混凝土的):1337用于不同的人行道,例如鹅卵石。

l未铺砌:585用于未铺砌,土路,越野。

接下来,在train.py中,定义从何处收集训练数据。我们应该将20%的数据分开以自动用于验证。我们还定义了batch_size为32。

classes = os.listdir('training_data')
num_classes = len(classes)


batch_size = 32
validation_size = 0.2
img_size = 128
num_channels = 3
train_path='training_data'

在train.py上设置的参数将在dataset.py类上读取。

data = dataset.read_train_sets(train_path, img_size, classes, validation_size=validation_size)

在dataset.py类中,我们定义了ROI和数据扩充。带有数据解释功能的两个函数,Adjust_gamma可以降低亮度,而Adjust_gammaness可以提高亮度。

def adjust_gamma(image):
 gamma = 0.5
 invGamma = 1.0 / gamma
 table = np.array([((i / 255.0) ** invGamma) * 255 
 for i in np.arange(0, 256)]).astype("uint8")


 return cv2.LUT(image, table)


def increase_brightness(img, value):
 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
 h, s, v = cv2.split(hsv)


 lim = 255 - value
 v[v > lim] = 255
 v[v <= lim] += value


 final_hsv = cv2.merge((h, s, v))
 img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)


 return img

加载输入数据时,将为每个图像定义ROI。

for fields in classes:
 index = classes.index(fields)
 print('Now going to read {} files (Index: {})'.format(fields, index))
 path = os.path.join(train_path, fields, '*g')
 files = glob.glob(path)
 for fl in files:
 image = cv2.imread(fl)


 # Region Of Interest (ROI)
 height, width = image.shape[:2]
 newHeight = int(round(height/2))
 image = image[newHeight-5:height-50, 0:width]


 brght_img = increase_brightness(image, value=150)


 shaded_img = adjust_gamma(image)


 image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR)
 image = image.astype(np.float32)
 image = np.multiply(image, 1.0 / 255.0)


 brght_img = cv2.resize(brght_img, (image_size, image_size),0,0, cv2.INTER_LINEAR)
 brght_img = brght_img.astype(np.float32)
 brght_img = np.multiply(brght_img, 1.0 / 255.0)


 shaded_img = cv2.resize(shaded_img, (image_size, image_size),0,0, cv2.INTER_LINEAR)
 shaded_img = shaded_img.astype(np.float32)
 shaded_img = np.multiply(brght_img, 1.0 / 255.0)

我们还会平衡输入图像,因为沥青的图像更多,而未铺砌和未铺砌的道路更少。

if index == 0: #asphalt
 images.append(image)
 images.append(brght_img)
 images.append(shaded_img)
elif index == 1: #paved
 for i in range(3):
 images.append(image)
 images.append(brght_img)
 images.append(shaded_img)
elif index == 2: #unpaved
 for i in range(6):
 images.append(image)
 images.append(brght_img)
 images.append(shaded_img)

回到train.py,让我们定义TensorFlow教程[2]中所示的CNN层。所有选择到训练步骤的图像都将传递到第一卷积层,其中包含有关通道的宽度,高度和数量的信息。前两层包含32个大小为3x3的滤镜。紧接着是一个具有3x3大小的64个滤镜的图层。所有的步幅都定义为1,填充的定义为0。正态分布用于权重初始化。为了在尺寸上减少输入,这有助于分析输入子区域中的特征信息,在所有卷积层中应用了最大池。在每个卷积层的末尾,在最大合并功能之后,将ReLU用作激活功能。

def create_convolutional_layer(input,
    num_input_channels, 
    conv_filter_size,  
    num_filters):


 weights = create_weights(shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters])
 biases = create_biases(num_filters)


 layer = tf.nn.conv2d(input=input,
      filter=weights,
      strides=[1, 1, 1, 1],
      padding='SAME')


 layer += biases


 layer = tf.nn.max_pool(value=layer,
       ksize=[1, 2, 2, 1],
       strides=[1, 2, 2, 1],
       padding='SAME')


 layer = tf.nn.relu(layer)

在卷积层之后,平坦层用于将卷积多维张量转换为一维张量。

def create_flatten_layer(layer):
 layer_shape = layer.get_shape()


 num_features = layer_shape[1:4].num_elements()


 layer = tf.reshape(layer, [-1, num_features])


 return layer

最后添加两个完全连接的层。在第一个完全连接的层中,应用了ReLU激活功能。第二个完全连接的层具有可能的输出,所需的类别。

def create_fc_layer(input,   
    num_inputs, 
    num_outputs,
    use_relu=True):


 weights = create_weights(shape=[num_inputs, num_outputs])
 biases = create_biases(num_outputs)


 layer = tf.matmul(input, weights) + biases
 if use_relu:
 layer = tf.nn.relu(layer)


 return layer

我们使用softmax函数来实现每个类的概率。最后,我们还使用Adam优化器,该优化器根据训练中使用的输入数据更新网络权重。

layer_conv1 = create_convolutional_layer(input=x,
    num_input_channels=num_channels,
    conv_filter_size=filter_size_conv1,
    num_filters=num_filters_conv1)


layer_conv2 = create_convolutional_layer(input=layer_conv1,
    num_input_channels=num_filters_conv1,
    conv_filter_size=filter_size_conv2,
    num_filters=num_filters_conv2)


layer_conv3= create_convolutional_layer(input=layer_conv2,
    num_input_channels=num_filters_conv2,
    conv_filter_size=filter_size_conv3,
    num_filters=num_filters_conv3)


layer_flat = create_flatten_layer(layer_conv3)


layer_fc1 = create_fc_layer(input=layer_flat,
      num_inputs=layer_flat.get_shape()[1:4].num_elements(),
      num_outputs=fc_layer_size,
      use_relu=True)


layer_fc2 = create_fc_layer(input=layer_fc1,
      num_inputs=fc_layer_size,
      num_outputs=num_classes,
      use_relu=False) 


y_pred = tf.nn.softmax(layer_fc2,name='y_pred')


y_pred_cls = tf.argmax(y_pred, dimension=1)
session.run(tf.global_variables_initializer())
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,
             labels=y_true)
cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

可以python train.py 在终端中训练模型的运行:

现在,有了经过训练的模型,我们就可以测试。首先,让我们准备好接收输入测试帧和输出文件名。

outputFile = sys.argv[2]


# Opening frames
cap = cv.VideoCapture(sys.argv[1])


vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 15, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))

检索训练好的模型并访问图形。

sess = tf.Session()
saver = tf.train.import_meta_graph('roadsurface-model.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))


graph = tf.get_default_graph()


y_pred = graph.get_tensor_by_name("y_pred:0")


x = graph.get_tensor_by_name("x:0")
y_true = graph.get_tensor_by_name("y_true:0")
y_test_images = np.zeros((1, len(os.listdir('training_data'))))

请记住,我们不需要整个图像,我们的培训着重于使用ROI,在这里我们也使用它。

width = int(round(cap.get(cv.CAP_PROP_FRAME_WIDTH)))
height = int(round(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))


newHeight = int(round(height/2))


while cv.waitKey(1) < 0:


 hasFrame, images = cap.read()


 finalimg = images


 images = images[newHeight-5:height-50, 0:width]
 images = cv.resize(images, (image_size, image_size), 0, 0, cv.INTER_LINEAR)
 images = np.array(images, dtype=np.uint8)
 images = images.astype('float32')
 images = np.multiply(images, 1.0/255.0)

最后,基于输出预测,我们可以在每帧中打印分类的表面类型。

x_batch = images.reshape(1, image_size, image_size, num_channels)


feed_dict_testing = {x: x_batch, y_true: y_test_images}
result = sess.run(y_pred, feed_dict=feed_dict_testing)


outputs = [result[0,0], result[0,1], result[0,2]]


value = max(outputs)
index = np.argmax(outputs)


if index == 0:
 label = 'Asphalt'
 prob = str("{0:.2f}".format(value))
 color = (0, 0, 0)
elif index == 1:
 label = 'Paved'
 prob = str("{0:.2f}".format(value))
 color = (153, 102, 102)
elif index == 2:
 label = 'Unpaved'
 prob = str("{0:.2f}".format(value))
 color = (0, 153, 255)


cv.rectangle(finalimg, (0, 0), (145, 40), (255, 255, 255), cv.FILLED)
cv.putText(finalimg, 'Class: ', (5,15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)
cv.putText(finalimg, label, (70,15), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
cv.putText(finalimg, prob, (5,35), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)


vid_writer.write(finalimg.astype(np.uint8))

可以测试在终端中运行的模型:python test.py PATH_TO_YOUR_FRAMES_SEQUENCE NAME_YOUR_VIDEO_FILE.avi。

03.路面质量分类

现在让我们包括质量分类。我们仅使用用于训练表面类型分类模型的相同CNN架构,并分别在每个表面类别上应用每个质量类别。因此,除了现有模型外,我们还培训了3种新模型。为此,大家将需要准备用于训练每个表面类别的模型的数据。在RTK数据集页面中,我们已经给出了按班级组织的框架。

基于OpenCV的路面质量检测的实现

用于质量课程的培训数据文件夹结构

要训练每种模型,小伙伴们可以在终端中运行:

python trainAsphaltQuality.py 
python trainPavedQuality.py 
python trainUnpavedQuality.py

现在,预测部分发生了什么变化。我们使用四个不同的图,每个训练模型一个。

graph = tf.Graph()
graphAQ = tf.Graph()
graphPQ = tf.Graph()
graphUQ = tf.Graph()

04.模型恢复

恢复类型模型

with graph.as_default():
 saver = tf.train.import_meta_graph('roadsurfaceType-model.meta')


 y_pred = graph.get_tensor_by_name("y_pred:0")


 x = graph.get_tensor_by_name("x:0")
 y_true = graph.get_tensor_by_name("y_true:0")
 y_test_images = np.zeros((1, len(os.listdir('training_data_type'))))


sess = tf.Session(graph = graph)
saver.restore(sess, tf.train.latest_checkpoint('typeCheckpoint/'))

恢复沥青质量模型

with graphAQ.as_default():
 saverAQ = tf.train.import_meta_graph('roadsurfaceAsphaltQuality-model.meta')


 y_predAQ = graphAQ.get_tensor_by_name("y_pred:0")


 xAQ = graphAQ.get_tensor_by_name("x:0")
 y_trueAQ = graphAQ.get_tensor_by_name("y_true:0")
 y_test_imagesAQ = np.zeros((1, len(os.listdir('training_data_asphalt_quality'))))


sessAQ = tf.Session(graph = graphAQ)
saverAQ.restore(sessAQ, tf.train.latest_checkpoint('asphaltCheckpoint/'))

恢复铺砌的质量模型

with graphPQ.as_default():
 saverPQ = tf.train.import_meta_graph('roadsurfacePavedQuality-model.meta')


 y_predPQ = graphPQ.get_tensor_by_name("y_pred:0")


 xPQ = graphPQ.get_tensor_by_name("x:0")
 y_truePQ = graphPQ.get_tensor_by_name("y_true:0")
 y_test_imagesPQ = np.zeros((1, len(os.listdir('training_data_paved_quality'))))


sessPQ = tf.Session(graph = graphPQ)
saverPQ.restore(sessPQ, tf.train.latest_checkpoint('pavedCheckpoint/'))

恢复未铺砌的质量模型

with graphUQ.as_default():
 saverUQ = tf.train.import_meta_graph('roadsurfaceUnpavedQuality-model.meta')


 y_predUQ = graphUQ.get_tensor_by_name("y_pred:0")


 xUQ = graphUQ.get_tensor_by_name("x:0")
 y_trueUQ = graphUQ.get_tensor_by_name("y_true:0")
 y_test_imagesUQ = np.zeros((1, len(os.listdir('training_data_unpaved_quality'))))


sessUQ = tf.Session(graph = graphUQ)
saverUQ.restore(sessUQ, tf.train.latest_checkpoint('unpavedCheckpoint/'))

此时,输出预测也要考虑质量模型,我们可以在每个帧中打印分类的表面类型以及该表面的质量。

if index == 0: #Asphalt
  label = 'Asphalt'
  prob = str("{0:.2f}".format(value))
  color = (0, 0, 0)
  x_batchAQ = images.reshape(1, image_size, image_size, num_channels)


  feed_dict_testingAQ = {xAQ: x_batchAQ, y_trueAQ: y_test_imagesAQ}
  resultAQ = sessAQ.run(y_predAQ, feed_dict=feed_dict_testingAQ)
  outputsQ = [resultAQ[0,0], resultAQ[0,1], resultAQ[0,2]]
  valueQ = max(outputsQ)
  indexQ = np.argmax(outputsQ)
  if indexQ == 0: #Asphalt - Good
   quality = 'Good'
   colorQ = (0, 255, 0)
   probQ = str("{0:.2f}".format(valueQ))
  elif indexQ == 1: #Asphalt - Regular
   quality = 'Regular'
   colorQ = (0, 204, 255)
   probQ = str("{0:.2f}".format(valueQ))
  elif indexQ == 2: #Asphalt - Bad
   quality = 'Bad'
   colorQ = (0, 0, 255)
   probQ = str("{0:.2f}".format(valueQ)) 
 elif index == 1: #Paved
  label = 'Paved'
  prob = str("{0:.2f}".format(value))
  color = (153, 102, 102)
  x_batchPQ = images.reshape(1, image_size, image_size, num_channels)


  feed_dict_testingPQ = {xPQ: x_batchPQ, y_truePQ: y_test_imagesPQ}
  resultPQ = sessPQ.run(y_predPQ, feed_dict=feed_dict_testingPQ)
  outputsQ = [resultPQ[0,0], resultPQ[0,1], resultPQ[0,2]]
  valueQ = max(outputsQ)
  indexQ = np.argmax(outputsQ)
  if indexQ == 0: #Paved - Good
   quality = 'Good'
   colorQ = (0, 255, 0)
   probQ = str("{0:.2f}".format(valueQ))
  elif indexQ == 1: #Paved - Regular
   quality = 'Regular'
   colorQ = (0, 204, 255)
   probQ = str("{0:.2f}".format(valueQ))
  elif indexQ == 2: #Paved - Bad
   quality = 'Bad'
   colorQ = (0, 0, 255)
   probQ = str("{0:.2f}".format(valueQ))
 elif index == 2: #Unpaved
  label = 'Unpaved'
  prob = str("{0:.2f}".format(value))
  color = (0, 153, 255)
  x_batchUQ = images.reshape(1, image_size, image_size, num_channels)


  feed_dict_testingUQ = {xUQ: x_batchUQ, y_trueUQ: y_test_imagesUQ}
  resultUQ = sessUQ.run(y_predUQ, feed_dict=feed_dict_testingUQ)
  outputsQ = [resultUQ[0,0], resultUQ[0,1]]
  valueQ = max(outputsQ)
  indexQ = np.argmax(outputsQ)
  if indexQ == 0: #Unpaved - Regular
   quality = 'Regular'
   colorQ = (0, 204, 255)
   probQ = str("{0:.2f}".format(valueQ))
  elif indexQ == 1: #Unpaved - Bad
   quality = 'Bad'
   colorQ = (0, 0, 255)
   probQ = str("{0:.2f}".format(valueQ))

打印结果

cv.rectangle(finalimg, (0, 0), (145, 80), (255, 255, 255), cv.FILLED)
cv.putText(finalimg, 'Class: ', (5,15), cv.FONT_HERSHEY_DUPLEX, 0.5, (0,0,0))
cv.putText(finalimg, label, (70,15), cv.FONT_HERSHEY_DUPLEX, 0.5, color)
cv.putText(finalimg, prob, (5,35), cv.FONT_HERSHEY_DUPLEX, 0.5, (0,0,0))
cv.putText(finalimg, 'Quality: ', (5,55), cv.FONT_HERSHEY_DUPLEX, 0.5, (0,0,0))
cv.putText(finalimg, quality, (70,55), cv.FONT_HERSHEY_DUPLEX, 0.5, colorQ)
cv.putText(finalimg, probQ, (5,75), cv.FONT_HERSHEY_DUPLEX, 0.5, (0,0,0))

大家可以在终端中测试运行情况:python testRTK.py PATH_TO_YOUR_FRAMES_SEQUENCE NAME_YOUR_VIDEO_FILE.avi。

一些结果样本:

基于OpenCV的路面质量检测的实现

致谢

lThiago Rateke << span="">rateke.thiago@gmail.com>

lKarla Aparecida Justen << span="">justen.karla@gmail.com>

lAldo von Wangenheim << span="">aldo.vw@ufsc.br>

参考文献

[1] T. Rateke, K. A. Justen and A. von Wangenheim, Road Surface Classification with Images Captured From Low-cost Cameras — Road Traversing Knowledge (RTK) Dataset, (2019), Revista de Informática Teórica e Aplicada (RITA)

[2] A. Sachan, Tensorflow Tutorial 2: image classifier using convolutional neural network, (2017), CV-Tricks.com

到此这篇关于基于OpenCV的路面质量检测的文章就介绍到这了,更多相关基于OpenCV的路面质量检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python Tkinter简单布局实例教程
Sep 03 Python
Python中if __name__ == &quot;__main__&quot;详细解释
Oct 21 Python
python文件与目录操作实例详解
Feb 22 Python
Python创建一个空的dataframe,并循环赋值的方法
Nov 08 Python
Python sklearn KFold 生成交叉验证数据集的方法
Dec 11 Python
python内存动态分配过程详解
Jul 15 Python
python 判断三个数字中的最大值实例代码
Jul 24 Python
关于django 1.10 CSRF验证失败的解决方法
Aug 31 Python
python脚本实现音频m4a格式转成MP3格式的实例代码
Oct 09 Python
django之导入并执行自定义的函数模块图解
Apr 01 Python
Python 线性回归分析以及评价指标详解
Apr 02 Python
python中的3种定义类方法
Nov 27 Python
Pycharm同步远程服务器调试的方法步骤
Nov 04 #Python
python归并排序算法过程实例讲解
Nov 04 #Python
Numpy数组的广播机制的实现
Nov 03 #Python
基于Python组装jmx并调用JMeter实现压力测试
Nov 03 #Python
Python os库常用操作代码汇总
Nov 03 #Python
如何基于Python爬虫爬取美团酒店信息
Nov 03 #Python
python import 上级目录的导入
Nov 03 #Python
You might like
关于php 接口问题(php接口主要也就是运用curl,curl函数)
2013/07/01 PHP
php实现按文件名搜索文件的远程文件查找器
2014/05/10 PHP
Yii2 assets清除缓存的方法
2016/05/16 PHP
php中strtotime函数性能分析
2016/11/20 PHP
php+webSoket实现聊天室示例代码(附源码)
2017/02/17 PHP
利用Homestead快速运行一个Laravel项目的方法详解
2017/11/14 PHP
FireBug 调试JS入门教程 如何调试JS
2013/12/23 Javascript
火狐下input焦点无法重复获取问题的解决方法
2014/06/16 Javascript
jquery实现的鼠标下拉滚动置顶效果
2014/07/24 Javascript
网站基于flash实现的Banner图切换效果代码
2014/10/14 Javascript
nodejs服务搭建教程 nodejs访问本地站点文件
2017/04/07 NodeJs
从零开始搭建webpack+react开发环境的详细步骤
2018/05/18 Javascript
Vue.js实现表格渲染的方法
2018/09/07 Javascript
puppeteer实现html截图的示例代码
2019/01/10 Javascript
vue elementui el-form rules动态验证的实例代码详解
2019/05/23 Javascript
vue中h5端打开app(判断是安卓还是苹果)
2021/02/26 Vue.js
简单实现Python爬取网络图片
2018/04/01 Python
python 实现selenium断言和验证的方法
2019/02/13 Python
pytorch 实现将自己的图片数据处理成可以训练的图片类型
2020/01/08 Python
Python Tkinter实例——模拟掷骰子
2020/10/24 Python
HTML5 Canvas旋转动画的2个代码例子(一个旋转的太极图效果)
2014/04/10 HTML / CSS
中国专业的综合网上购物商城:京东
2016/08/02 全球购物
在家更换处方镜片:Lensabl
2019/05/01 全球购物
Kickers鞋英国官网:男士、女士和儿童鞋
2021/03/08 全球购物
汽车电子与维修专业大学生求职信
2013/09/28 职场文书
创伤外科专业推荐信范文
2013/11/19 职场文书
园林毕业生自我鉴定范文
2013/12/29 职场文书
大学军训感想
2014/02/12 职场文书
小学师德标兵先进事迹材料
2014/05/25 职场文书
大学生简历求职信
2014/06/24 职场文书
语文复习计划
2015/01/19 职场文书
教师读书笔记
2015/06/29 职场文书
党校培训学习心得体会
2016/01/06 职场文书
正确使用MySQL update语句
2021/05/26 MySQL
利用uni-app生成微信小程序的踩坑记录
2022/04/05 Javascript
ubuntu开机后ROS程序自启动问题
2022/12/24 Servers