使用sklearn对多分类的每个类别进行指标评价操作


Posted in Python onJune 11, 2020

今天晚上,笔者接到客户的一个需要,那就是:对多分类结果的每个类别进行指标评价,也就是需要输出每个类型的精确率(precision),召回率(recall)以及F1值(F1-score)。

对于这个需求,我们可以用sklearn来解决,方法并没有难,笔者在此仅做记录,供自己以后以及读者参考。

我们模拟的数据如下:

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

其中y_true为真实数据,y_pred为多分类后的模拟数据。使用sklearn.metrics中的classification_report即可实现对多分类的每个类别进行指标评价。

示例的Python代码如下:

# -*- coding: utf-8 -*-
from sklearn.metrics import classification_report

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

t = classification_report(y_true, y_pred, target_names=['北京', '上海', '成都'])

print(t)

输出结果如下:

precision  recall f1-score  support

     北京    0.75   0.75   0.75     4
     上海    1.00   0.67   0.80     3
     成都    0.50   0.67   0.57     3

  accuracy              0.70    10
  macro avg    0.75   0.69   0.71    10
weighted avg    0.75   0.70   0.71    10

需要注意的是,输出的结果数据类型为str,如果需要使用该输出结果,则可将该方法中的output_dict参数设置为True,此时输出的结果如下:

{‘北京': {‘precision': 0.75, ‘recall': 0.75, ‘f1-score': 0.75, ‘support': 4},
‘上海': {‘precision': 1.0, ‘recall': 0.6666666666666666, ‘f1-score': 0.8, ‘support': 3},
‘成都': {‘precision': 0.5, ‘recall': 0.6666666666666666, ‘f1-score': 0.5714285714285715, ‘support': 3},
‘accuracy': 0.7,
‘macro avg': {‘precision': 0.75, ‘recall': 0.6944444444444443, ‘f1-score': 0.7071428571428572, ‘support': 10},
‘weighted avg': {‘precision': 0.75, ‘recall': 0.7, ‘f1-score': 0.7114285714285715, ‘support': 10}}

使用confusion_matrix方法可以输出该多分类问题的混淆矩阵,代码如下:

from sklearn.metrics import confusion_matrix
y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']
print(confusion_matrix(y_true, y_pred, labels = ['北京', '上海', '成都']))

输出结果如下:

[[2 0 1]
 [0 3 1]
 [0 1 2]]

为了将该混淆矩阵绘制成图片,可使用如下的Python代码:

# -*- coding: utf-8 -*-
# author: Jclian91
# place: Daxing Beijing
# time: 2019-11-14 21:52

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import matplotlib as mpl

# 支持中文字体显示, 使用于Mac系统
zhfont=mpl.font_manager.FontProperties(fname="/Library/Fonts/Songti.ttc")

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

classes = ['北京', '上海', '成都']
confusion = confusion_matrix(y_true, y_pred)

# 绘制热度图
plt.imshow(confusion, cmap=plt.cm.Greens)
indices = range(len(confusion))
plt.xticks(indices, classes, fontproperties=zhfont)
plt.yticks(indices, classes, fontproperties=zhfont)
plt.colorbar()
plt.xlabel('y_pred')
plt.ylabel('y_true')

# 显示数据
for first_index in range(len(confusion)):
  for second_index in range(len(confusion[first_index])):
    plt.text(first_index, second_index, confusion[first_index][second_index])

# 显示图片
plt.show()

生成的混淆矩阵图片如下:

使用sklearn对多分类的每个类别进行指标评价操作

补充知识:python Sklearn实现xgboost的二分类和多分类

二分类:

train2.txt的格式如下:

使用sklearn对多分类的每个类别进行指标评价操作

import numpy as np
import pandas as pd
import sklearn
from sklearn.cross_validation import train_test_split,cross_val_score
from xgboost.sklearn import XGBClassifier
from sklearn.metrics import precision_score,roc_auc_score

min_max_scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))
resultX = []
resultY = []
with open("./train_data/train2.txt",'r') as rf:
  train_lines = rf.readlines()
  for train_line in train_lines:
    train_line_temp = train_line.split(",")
    train_line_temp = map(float, train_line_temp)
    line_x = train_line_temp[1:-1]
    line_y = train_line_temp[-1]
    resultX.append(line_x)
    resultY.append(line_y)

X = np.array(resultX)
Y = np.array(resultY)
X = min_max_scaler.fit_transform(X)
X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3)

xgbc = XGBClassifier()
xgbc.fit(X_train,Y_train)
pre_test = xgbc.predict(X_test)

auc_score = roc_auc_score(Y_test,pre_test)
pre_score = precision_score(Y_test,pre_test)

print("xgb_auc_score:",auc_score)
print("xgb_pre_score:",pre_score)

多分类:有19种分类其中正常0,异常1~18种。数据格式如下:

使用sklearn对多分类的每个类别进行指标评价操作

# -*- coding:utf-8 -*-
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.cross_validation import train_test_split,cross_val_score
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from xgboost.sklearn import XGBClassifier
import sklearn
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import precision_score,roc_auc_score
min_max_scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))

resultX = []
resultY = []
with open("../train_data/train_multi_class.txt",'r') as rf:
  train_lines = rf.readlines()
  for train_line in train_lines:
    train_line_temp = train_line.split(",")
    train_line_temp = map(float, train_line_temp) # 转化为浮点数
    line_x = train_line_temp[1:-1]
    line_y = train_line_temp[-1]
    resultX.append(line_x)
    resultY.append(line_y)

X = np.array(resultX)
Y = np.array(resultY)

#fit_transform(partData)对部分数据先拟合fit,找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的),然后对该partData进行转换transform,从而实现数据的标准化、归一化等等。。
X = min_max_scaler.fit_transform(X)
#通过OneHotEncoder函数将Y值离散化成19维,例如3离散成000000···100

Y = OneHotEncoder(sparse = False).fit_transform(Y.reshape(-1,1))
X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)

model = OneVsRestClassifier(XGBClassifier(),n_jobs=2)
clf = model.fit(X_train, Y_train)

pre_Y = clf.predict(X_test)
test_auc2 = roc_auc_score(Y_test,pre_Y)#验证集上的auc值
print ("xgb_muliclass_auc:",test_auc2)

以上这篇使用sklearn对多分类的每个类别进行指标评价操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用fileinput模块实现逐行读取文件的方法
Apr 29 Python
python中zip和unzip数据的方法
May 27 Python
CentOS 7下Python 2.7升级至Python3.6.1的实战教程
Jul 06 Python
python用户管理系统
Mar 13 Python
python 自定义对象的打印方法
Jan 12 Python
python实战串口助手_解决8串口多个发送的问题
Jun 12 Python
python区分不同数据类型的方法
Oct 14 Python
Python selenium 自动化脚本打包成一个exe文件(推荐)
Jan 14 Python
Python基础之字符串常见操作经典实例详解
Feb 26 Python
Python 基于jwt实现认证机制流程解析
Jun 22 Python
Python 解析简单的XML数据
Jul 24 Python
Django model class Meta原理解析
Nov 14 Python
python属于解释语言吗
Jun 11 #Python
numpy的Fancy Indexing和array比较详解
Jun 11 #Python
python如何更新包
Jun 11 #Python
浅谈keras中自定义二分类任务评价指标metrics的方法以及代码
Jun 11 #Python
Keras中的多分类损失函数用法categorical_crossentropy
Jun 11 #Python
Python 列表中的修改、添加和删除元素的实现
Jun 11 #Python
python中什么是面向对象
Jun 11 #Python
You might like
优化PHP代码的53条建议
2008/03/27 PHP
php循环输出数据库内容的代码
2008/05/24 PHP
PHP在特殊字符前加斜杠的实现代码
2011/07/17 PHP
IIS安装Apache伪静态插件的具体操作图文
2013/07/01 PHP
详解WordPress中添加和执行动作的函数使用方法
2015/12/29 PHP
php魔法函数与魔法常量使用介绍
2017/07/23 PHP
用JS操作FRAME中的IFRAME及其内容的实现代码
2008/07/26 Javascript
Dom 结点创建 基础知识
2011/10/01 Javascript
js实现简单随机抽奖的方法
2015/01/27 Javascript
js获取表格的行数和列数的方法
2015/10/23 Javascript
JavaScript动态检验密码强度的实现方法
2016/11/09 Javascript
Vue 父子组件、组件间通信
2017/03/08 Javascript
mui上拉加载功能实例详解
2017/04/13 Javascript
Vue中定义全局变量与常量的各种方式详解
2017/08/23 Javascript
vue实现在表格里,取每行的id的方法
2018/03/09 Javascript
Vue组件创建和传值的方法
2018/08/17 Javascript
AngularJS $http post 传递参数数据的方法
2018/10/09 Javascript
vue实现鼠标移入移出事件代码实例
2019/03/27 Javascript
javascript异步处理与Jquery deferred对象用法总结
2019/06/04 jQuery
jquery实现掷骰子小游戏
2019/10/24 jQuery
继承行为在 ES5 与 ES6 中的区别详解
2019/12/24 Javascript
JavaScript点击按钮生成4位随机验证码
2021/01/28 Javascript
Python中利用sqrt()方法进行平方根计算的教程
2015/05/15 Python
python遍历文件夹下所有excel文件
2018/01/03 Python
pycharm: 恢复(reset) 误删文件的方法
2018/10/22 Python
Python第三方库face_recognition在windows上的安装过程
2019/05/03 Python
django创建简单的页面响应实例教程
2019/09/06 Python
解决django-xadmin列表页filter关联对象搜索问题
2019/11/15 Python
教师研修随笔感言
2014/01/23 职场文书
运动会入场词50字
2014/02/20 职场文书
禁毒宣传工作方案
2014/05/23 职场文书
捐书倡议书
2014/08/29 职场文书
2015年计生协会工作总结
2015/04/24 职场文书
优秀创业计划书分享
2019/07/19 职场文书
关于golang高并发的实现与注意事项说明
2021/05/08 Golang
Windows Server 2019 域控制器安装图文教程
2022/04/28 Servers