浅谈TensorFlow中读取图像数据的三种方式


Posted in Python onJune 30, 2020

 本文面对三种常常遇到的情况,总结三种读取数据的方式,分别用于处理单张图片、大量图片,和TFRecorder读取方式。并且还补充了功能相近的tf函数。

1、处理单张图片

我们训练完模型之后,常常要用图片测试,有的时候,我们并不需要对很多图像做测试,可能就是几张甚至一张。这种情况下没有必要用队列机制。

import tensorflow as tf
import matplotlib.pyplot as plt

def read_image(file_name):
 img = tf.read_file(filename=file_name)  # 默认读取格式为uint8
 print("img 的类型是",type(img));
 img = tf.image.decode_jpeg(img,channels=0) # channels 为1得到的是灰度图,为0则按照图片格式来读
 return img

def main( ):
 with tf.device("/cpu:0"):

  # img_path是文件所在地址包括文件名称,地址用相对地址或者绝对地址都行 
   img_path='./1.jpg'
   img=read_image(img_path)
   with tf.Session() as sess:
   image_numpy=sess.run(img)
   print(image_numpy)
   print(image_numpy.dtype)
   print(image_numpy.shape)
   plt.imshow(image_numpy)
   plt.show()

if __name__=="__main__":
 main()

"""

输出结果为:

img 的类型是 <class 'tensorflow.python.framework.ops.Tensor'>
[[[196 219 209]
  [196 219 209]
  [196 219 209]
  ...

 [[ 71 106  42]
  [ 59  89  39]
  [ 34  63  19]
  ...
  [ 21  52  46]
  [ 15  45  43]
  [ 22  50  53]]]
uint8
(675, 1200, 3)
"""

 

和tf.read_file用法相似的函数还有tf.gfile.FastGFile  tf.gfile.GFile,只是要指定读取方式是'r' 还是'rb' 。

2、需要读取大量图像用于训练

这种情况就需要使用Tensorflow队列机制。首先是获得每张图片的路径,把他们都放进一个list里面,然后用string_input_producer创建队列,再用tf.WholeFileReader读取。具体请看下例:

def get_image_batch(data_file,batch_size):
 data_names=[os.path.join(data_file,k) for k in os.listdir(data_file)]
 
 #这个num_epochs函数在整个Graph是local Variable,所以在sess.run全局变量的时候也要加上局部变量。 
 filenames_queue=tf.train.string_input_producer(data_names,num_epochs=50,shuffle=True,capacity=512)
 reader=tf.WholeFileReader()
 _,img_bytes=reader.read(filenames_queue)
 image=tf.image.decode_png(img_bytes,channels=1) #读取的是什么格式,就decode什么格式
 #解码成单通道的,并且获得的结果的shape是[?, ?,1],也就是Graph不知道图像的大小,需要set_shape
 image.set_shape([180,180,1]) #set到原本已知图像的大小。或者直接通过tf.image.resize_images,tf.reshape()
 image=tf.image.convert_image_dtype(image,tf.float32)
 #预处理 下面的一句代码可以换成自己想使用的预处理方式
 #image=tf.divide(image,255.0) 
 return tf.train.batch([image],batch_size)

这里的date_file是指文件夹所在的路径,不包括文件名。第一句是遍历指定目录下的文件名称,存放到一个list中。当然这个做法有很多种方法,比如glob.glob,或者tf.train.match_filename_once

全部代码如下:

import tensorflow as tf
import os
def read_image(data_file,batch_size):
 data_names=[os.path.join(data_file,k) for k in os.listdir(data_file)]
 filenames_queue=tf.train.string_input_producer(data_names,num_epochs=5,shuffle=True,capacity=30)
 reader=tf.WholeFileReader()
 _,img_bytes=reader.read(filenames_queue)
 image=tf.image.decode_jpeg(img_bytes,channels=1)
 image=tf.image.resize_images(image,(180,180))

 image=tf.image.convert_image_dtype(image,tf.float32)
 return tf.train.batch([image],batch_size)

def main( ):
 img_path=r'F:\dataSet\WIDER\WIDER_train\images\6--Funeral' #本地的一个数据集目录,有足够的图像
 img=read_image(img_path,batch_size=10)
 image=img[0] #取出每个batch的第一个数据
 print(image)
 init=[tf.global_variables_initializer(),tf.local_variables_initializer()]
 with tf.Session() as sess:
  sess.run(init)
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess=sess,coord=coord)
  try:
   while not coord.should_stop():
    print(image.shape)
  except tf.errors.OutOfRangeError:
   print('read done')
  finally:
   coord.request_stop()
  coord.join(threads)


if __name__=="__main__":
 main()

"""

输出如下:

(180, 180, 1)
(180, 180, 1)
(180, 180, 1)
(180, 180, 1)
(180, 180, 1)
"""

这段代码可以说写的很是规整了。注意到init里面有对local变量的初始化,并且因为用到了队列,当然要告诉电脑什么时候队列开始, tf.train.Coordinator 和 tf.train.start_queue_runners 就是两个管理队列的类,用法如程序所示。

与 tf.train.string_input_producer相似的函数是 tf.train.slice_input_producer。 tf.train.slice_input_producer和tf.train.string_input_producer的第一个参数形式不一样。等有时间再做一个二者比较的博客

 3、对TFRecorder解码获得图像数据

其实这块和上一种方式差不多的,更重要的是怎么生成TFRecorder文件,这一部分我会补充到另一篇博客上。

仍然使用 tf.train.string_input_producer。

import tensorflow as tf
import matplotlib.pyplot as plt
import os
import cv2
import numpy as np
import glob

def read_image(data_file,batch_size):
 files_path=glob.glob(data_file)
 queue=tf.train.string_input_producer(files_path,num_epochs=None)
 reader = tf.TFRecordReader()
 print(queue)
 _, serialized_example = reader.read(queue)
 features = tf.parse_single_example(
  serialized_example,
  features={
   'image_raw': tf.FixedLenFeature([], tf.string),
   'label_raw': tf.FixedLenFeature([], tf.string),
  })
 image = tf.decode_raw(features['image_raw'], tf.uint8)
 image = tf.cast(image, tf.float32)
 image.set_shape((12*12*3))
 label = tf.decode_raw(features['label_raw'], tf.float32)
 label.set_shape((2))
 # 预处理部分省略,大家可以自己根据需要添加
 return tf.train.batch([image,label],batch_size=batch_size,num_threads=4,capacity=5*batch_size)

def main( ):
 img_path=r'F:\python\MTCNN_by_myself\prepare_data\pnet*.tfrecords' #本地的几个tf文件
 img,label=read_image(img_path,batch_size=10)
 image=img[0]
 init=[tf.global_variables_initializer(),tf.local_variables_initializer()]
 with tf.Session() as sess:
  sess.run(init)
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(sess=sess,coord=coord)
  try:
   while not coord.should_stop():
    print(image.shape)
  except tf.errors.OutOfRangeError:
   print('read done')
  finally:
   coord.request_stop()
  coord.join(threads)


if __name__=="__main__":
 main()

在read_image函数中,先使用glob函数获得了存放tfrecord文件的列表,然后根据TFRecord文件是如何存的就如何parse,再set_shape;这里有必要提醒下parse的方式。我们看到这里用的是tf.decode_raw ,因为做TFRecord是将图像数据string化了,数据是串行的,丢失了空间结果。从features中取出image和label的数据,这时就要用 tf.decode_raw  解码,得到的结果当然也是串行的了,所以set_shape 成一个串行的,再reshape。这种方式是取决于你的编码TFRecord方式的。

再举一种例子:

reader=tf.TFRecordReader()
_,serialized_example=reader.read(file_name_queue)
features = tf.parse_single_example(serialized_example, features={
 'data': tf.FixedLenFeature([256,256], tf.float32), ###
 'label': tf.FixedLenFeature([], tf.int64),
 'id': tf.FixedLenFeature([], tf.int64)
})
img = features['data']
label =features['label']
id = features['id']

这个时候就不需要任何解码了。因为做TFRecord的方式就是直接把图像数据append进去了。

参考链接:

https://blog.csdn.net/qq_34914551/article/details/86286184

到此这篇关于浅谈TensorFlow中读取图像数据的三种方式的文章就介绍到这了,更多相关TensorFlow 读取图像数据内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
利用soaplib搭建webservice详细步骤和实例代码
Nov 20 Python
python3.6 实现AES加密的示例(pyCryptodome)
Jan 10 Python
python实现根据指定字符截取对应的行的内容方法
Oct 23 Python
在Python 中实现图片加框和加字的方法
Jan 26 Python
python基于SMTP协议发送邮件
May 31 Python
pyqt5之将textBrowser的内容写入txt文档的方法
Jun 21 Python
Python命令行参数解析工具 docopt 安装和应用过程详解
Sep 26 Python
python multiprocessing多进程变量共享与加锁的实现
Oct 02 Python
解决Python二维数组赋值问题
Nov 28 Python
python使用openCV遍历文件夹里所有视频文件并保存成图片
Jan 14 Python
TensorFlow 输出checkpoint 中的变量名与变量值方式
Feb 11 Python
python 通过exifread读取照片信息
Dec 24 Python
python中 _、__、__xx__()区别及使用场景
Jun 30 #Python
Django实现内容缓存实例方法
Jun 30 #Python
Pytorch 卷积中的 Input Shape用法
Jun 29 #Python
Python闭包装饰器使用方法汇总
Jun 29 #Python
使用已经得到的keras模型识别自己手写的数字方式
Jun 29 #Python
Python接口测试环境搭建过程详解
Jun 29 #Python
python字典的值可以修改吗
Jun 29 #Python
You might like
PHP 的几个配置文件函数
2006/12/21 PHP
php中防止伪造跨站请求的小招式
2011/09/02 PHP
CodeIgniter模板引擎使用实例
2014/07/15 PHP
php面向对象编程self和static的区别
2016/05/08 PHP
JS读取XML文件示例代码
2013/11/15 Javascript
javascript学习笔记(五)原型和原型链详解
2014/10/08 Javascript
原生javascript实现DIV拖拽并计算重复面积
2015/01/02 Javascript
Javascript核心读书有感之语句
2015/02/11 Javascript
jQuery实现的背景动态变化导航菜单效果
2015/08/24 Javascript
简单理解JavaScript中的封装与继承特性
2016/03/19 Javascript
AngularJS 中使用Swiper制作滚动图不能滑动的解决方法
2016/11/15 Javascript
实例分析js事件循环机制
2017/12/13 Javascript
使用Three.js实现太阳系八大行星的自转公转示例代码
2019/04/09 Javascript
Node.js安装详细步骤教程(Windows版)详解
2019/09/01 Javascript
Openlayers学习之加载鹰眼控件
2020/09/28 Javascript
Vue select 绑定动态变量的实例讲解
2020/10/22 Javascript
[03:58]2014DOTA2国际邀请赛 龙宝赛后解密DK获胜之道
2014/07/14 DOTA
[56:46]2018DOTA2亚洲邀请赛 3.31 小组赛 B组 VP vs Effect
2018/04/01 DOTA
tornado框架blog模块分析与使用
2013/11/21 Python
python数据结构树和二叉树简介
2014/04/29 Python
Python HTMLParser模块解析html获取url实例
2015/04/08 Python
常见的在Python中实现单例模式的三种方法
2015/04/08 Python
Python实现定时任务
2017/02/08 Python
python tkinter图形界面代码统计工具(更新)
2019/09/18 Python
python 如何上传包到pypi
2020/12/24 Python
涂鸦板简单实现 Html5编写属于自己的画画板
2016/07/05 HTML / CSS
新加坡网上化妆品店:Best Buy World
2018/05/18 全球购物
Yankee Candle官网:美国最畅销蜡烛品牌之一
2020/01/05 全球购物
小区门卫岗位职责范本
2014/08/24 职场文书
运动会演讲稿300字
2014/08/25 职场文书
行政执法队伍作风整顿剖析材料
2014/10/11 职场文书
学术会议通知范文
2015/04/15 职场文书
千手观音观后感
2015/06/03 职场文书
2016大学生社会实践心得体会范文
2016/01/14 职场文书
【海涛七七解说】DCG第二周:DK VS 天禄
2022/04/01 DOTA
Windows Server 2019 安装DHCP服务及相关配置
2022/04/28 Servers