使用tensorflow实现线性svm


Posted in Python onSeptember 07, 2018

本文实例为大家分享了tensorflow实现线性svm的具体代码,供大家参考,具体内容如下

简单方法:

import tensorflow as tf
import numpy as np

from matplotlib import pyplot as plt
def placeholder_input():

  x=tf.placeholder('float',shape=[None,2],name='x_batch')
  y=tf.placeholder('float',shape=[None,1],name='y_batch')
  return x,y
def get_base(_nx, _ny):
  _xf = np.linspace(x_min, x_max, _nx)
  _yf = np.linspace(y_min, y_max, _ny)
  xf1, yf1 = np.meshgrid(_xf, _yf)
  n_xf,n_yf=np.hstack((xf1)),np.hstack((yf1))
  return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]
x_data=np.load('x.npy')
y1=np.load('y.npy')

y_data=np.reshape(y1,[200,1])
step=10000
tol=1e-3

x,y=placeholder_input()
w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")
b = tf.Variable(0., dtype=tf.float32, name="b_v")

y_pred =tf.matmul(x,w)+b 
y_predict =tf.sign( tf.matmul(x,w)+b )
# cost = ∑_(i=1)^N max⁡(1-y_i⋅(w⋅x_i+b),0)+1/2 + 0.5 * ‖w‖^2
cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-y*y_pred,0))

train_step = tf.train.AdamOptimizer(0.01).minimize(cost)

with tf.Session() as sess:

  sess.run(tf.global_variables_initializer())
  for i in range(step):

    sess.run(train_step,feed_dict={x:x_data,y:y_data})
    y_p,y_p1,loss,w_value,b_value=sess.run([y_predict,y_pred,cost,w,b],feed_dict={x:x_data,y:y_data})



x_min, y_min = np.minimum.reduce(x_data,axis=0) -2
x_max, y_max = np.maximum.reduce(x_data,axis=0) +2

xf, yf , matrix_= get_base(200, 200)

#xy_xf, xy_yf = np.meshgrid(xf, yf, sparse=True)

z=np.sign(np.matmul(matrix_,w_value)+b_value).reshape((200,200))

plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)

for i in range(200):

  if y_p[i,0]==1.0:
    plt.scatter(x_data[i,0],x_data[i,1],color='r')
  else:
    plt.scatter(x_data[i,0],x_data[i,1],color='g')

plt.axis([x_min,x_max,y_min ,y_max])
#plt.contour(xf, yf, z)
plt.show()

       进阶:

import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt


class SVM():
  def __init__(self):
    self.x=tf.placeholder('float',shape=[None,2],name='x_batch')
    self.y=tf.placeholder('float',shape=[None,1],name='y_batch')
    self.sess=tf.Session()
  @staticmethod
  def get_base(self,_nx, _ny):
    _xf = np.linspace(self.x_min, self.x_max, _nx)
    _yf = np.linspace(self.y_min, self.y_max, _ny)
    n_xf, n_yf = np.meshgrid(_xf, _yf)
    return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]
  def readdata(self):

    x_data=np.load('x.npy')
    y1=np.load('y.npy')
    y_data=np.reshape(y1,[200,1])
    return x_data ,y_data

  def train(self,step,x_data,y_data):

    w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")
    b = tf.Variable(0., dtype=tf.float32, name="b_v")


    self.y_pred =tf.matmul(self.x,w)+b 

    cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-self.y*self.y_pred,0))
    train_step = tf.train.AdamOptimizer(0.01).minimize(cost)

    self.y_predict =tf.sign( tf.matmul(self.x,w)+b )
    self.sess.run(tf.global_variables_initializer())
    for i in range(step):      
      self.sess.run(train_step,feed_dict={self.x:x_data,self.y:y_data})
      self.y_predict_value,self.w_value,self.b_value,cost_value=self.sess.run([self.y_predict,w,b,cost],feed_dict={self.x:x_data,self.y:y_data})
      print('**********cost=%f***********'%cost_value)
  def predict(self,y_data):    


    correct = tf.equal(self.y_predict_value, y_data)

    precision=tf.reduce_mean(tf.cast(correct, tf.float32)) 

    precision_value=self.sess.run(precision)
    return precision_value

  def drawresult(self,x_data):


    self.x_min, self.y_min = np.minimum.reduce(x_data,axis=0) -2
    self.x_max, self.y_max = np.maximum.reduce(x_data,axis=0) +2

    xf, yf , matrix_= self.get_base(self,200, 200)

    w_value=self.w_value
    b_value=self.b_value
    print(w_value,b_value)
    z=np.sign(np.matmul(matrix_,self.w_value)+self.b_value).reshape((200,200))

    plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)

    for i in range(200):

      if self.y_predict_value[i,0]==1.0:
        plt.scatter(x_data[i,0],x_data[i,1],color='r')
      else:
        plt.scatter(x_data[i,0],x_data[i,1],color='g')

    plt.axis([self.x_min,self.x_max,self.y_min ,self.y_max])
    #plt.contour(xf, yf, z)
    plt.show()     

svm=SVM()
x_data,y_data=svm.readdata()
svm.train(5000,x_data,y_data)
precision_value=svm.predict(y_data)
svm.drawresult(x_data)

没有数据的可以用这个

import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt


class SVM():
  def __init__(self):
    self.x=tf.placeholder('float',shape=[None,2],name='x_batch')
    self.y=tf.placeholder('float',shape=[None,1],name='y_batch')
    self.sess=tf.Session()

  def creat_dataset(self,size, n_dim=2, center=0, dis=2, scale=1, one_hot=False):
    center1 = (np.random.random(n_dim) + center - 0.5) * scale + dis
    center2 = (np.random.random(n_dim) + center - 0.5) * scale - dis
    cluster1 = (np.random.randn(size, n_dim) + center1) * scale
    cluster2 = (np.random.randn(size, n_dim) + center2) * scale
    x_data = np.vstack((cluster1, cluster2)).astype(np.float32)
    y_data = np.array([1] * size + [-1] * size)
    indices = np.random.permutation(size * 2)
    x_data, y_data = x_data[indices], y_data[indices]
    y_data=np.reshape(y_data,(y_data.shape[0],1))
    if not one_hot:
      return x_data, y_data
    y_data = np.array([[0, 1] if label == 1 else [1, 0] for label in y_data], dtype=np.int8)
    return x_data, y_data

  @staticmethod
  def get_base(self,_nx, _ny):
    _xf = np.linspace(self.x_min, self.x_max, _nx)
    _yf = np.linspace(self.y_min, self.y_max, _ny)
    n_xf, n_yf = np.meshgrid(_xf, _yf)
    return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]
#  def readdata(self):
#    
#    x_data=np.load('x.npy')
#    y1=np.load('y.npy')
#    y_data=np.reshape(y1,[200,1])
#    return x_data ,y_data

  def train(self,step,x_data,y_data):

    w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")
    b = tf.Variable(0., dtype=tf.float32, name="b_v")


    self.y_pred =tf.matmul(self.x,w)+b 

    cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-self.y*self.y_pred,0))
    train_step = tf.train.AdamOptimizer(0.01).minimize(cost)

    self.y_predict =tf.sign( tf.matmul(self.x,w)+b )
    self.sess.run(tf.global_variables_initializer())
    for i in range(step):
      index=np.random.permutation(y_data.shape[0])
      x_data1, y_data1 = x_data[index], y_data[index]
      self.sess.run(train_step,feed_dict={self.x:x_data1[0:50],self.y:y_data1[0:50]})
      self.y_predict_value,self.w_value,self.b_value,cost_value=self.sess.run([self.y_predict,w,b,cost],feed_dict={self.x:x_data,self.y:y_data})
      if i%1000==0:print('**********cost=%f***********'%cost_value)
  def predict(self,y_data):    

    correct = tf.equal(self.y_predict_value, y_data)

    precision=tf.reduce_mean(tf.cast(correct, tf.float32)) 

    precision_value=self.sess.run(precision)
    return precision_value, self.y_predict_value

  def drawresult(self,x_data):

    self.x_min, self.y_min = np.minimum.reduce(x_data,axis=0) -2
    self.x_max, self.y_max = np.maximum.reduce(x_data,axis=0) +2

    xf, yf , matrix_= self.get_base(self,200, 200)


    print(self.w_value,self.b_value)
    z=np.sign(np.matmul(matrix_,self.w_value)+self.b_value).reshape((200,200))
    plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)

    for i in range(x_data.shape[0]):

      if self.y_predict_value[i,0]==1.0:
        plt.scatter(x_data[i,0],x_data[i,1],color='r')
      else:
        plt.scatter(x_data[i,0],x_data[i,1],color='g')

    plt.axis([self.x_min,self.x_max,self.y_min ,self.y_max])
#    plt.contour(xf, yf, z)
    plt.show()     

svm=SVM()
x_data,y_data=svm.creat_dataset(size=200, n_dim=2, center=0, dis=4, one_hot=False)


svm.train(5000,x_data,y_data)
precision_value,y_predict_value=svm.predict(y_data)
svm.drawresult(x_data)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用cookie库操保存cookie详解
Mar 03 Python
Python中__call__用法实例
Aug 29 Python
对python .txt文件读取及数据处理方法总结
Apr 23 Python
pandas 根据列的值选取所有行的示例
Nov 07 Python
浅谈Python小波分析库Pywavelets的一点使用心得
Jul 09 Python
用Python画一个LinkinPark的logo代码实例
Sep 10 Python
Django和Flask框架优缺点对比
Oct 24 Python
如何利用pygame实现简单的五子棋游戏
Dec 29 Python
tensorflow2.0保存和恢复模型3种方法
Feb 03 Python
python GUI库图形界面开发之PyQt5打印控件QPrinter详细使用方法与实例
Feb 28 Python
Python面向对象程序设计之私有变量,私有方法原理与用法分析
Mar 23 Python
pycharm中如何自定义设置通过“ctrl+滚轮”进行放大和缩小实现方法
Sep 16 Python
Python多进程池 multiprocessing Pool用法示例
Sep 07 #Python
详解python while 函数及while和for的区别
Sep 07 #Python
使用TensorFlow实现SVM
Sep 06 #Python
使用Python制作自动推送微信消息提醒的备忘录功能
Sep 06 #Python
python实现机器学习之多元线性回归
Sep 06 #Python
python实现机器学习之元线性回归
Sep 06 #Python
Python import与from import使用及区别介绍
Sep 06 #Python
You might like
PHP的宝库目录--PEAR
2006/10/09 PHP
php UTF8 文件的签名问题
2009/10/30 PHP
php设计模式 Visitor 访问者模式
2011/06/28 PHP
PHP setcookie设置Cookie用法(及设置无效的问题)
2011/07/13 PHP
解析PHP自带的进位制之间的转换函数
2013/06/08 PHP
PHP_NETWORK_GETADDRESSES: GETADDRINFO FAILED问题解决办法
2014/05/04 PHP
Zend Framework入门教程之Zend_Db数据库操作详解
2016/12/08 PHP
详解php curl带有csrf-token验证模拟提交方法
2018/04/18 PHP
PHP7使用ODBC连接SQL Server2008 R2数据库示例【基于thinkPHP5.1框架】
2019/05/06 PHP
JavaScript去除空格的三种方法(正则/传参函数/trim)
2013/02/06 Javascript
JavaScript中解析JSON数据的三种方法
2015/07/03 Javascript
用jQuery向div中添加Html文本内容的简单实现
2016/07/13 Javascript
深入学习js瀑布流布局
2016/10/14 Javascript
Bootstrap 表单验证formValidation 实现表单动态验证功能
2017/05/17 Javascript
javascript实现延时显示提示框效果
2017/06/01 Javascript
jQuery取得元素标签名称小结(附代码)
2017/08/16 jQuery
Vue2.0权限树组件实现代码
2017/08/29 Javascript
js推箱子小游戏步骤代码解析
2018/01/10 Javascript
Angular使用操作事件指令ng-click传多个参数示例
2018/03/27 Javascript
浅谈vue-cli 3.0.x 初体验
2018/04/11 Javascript
Vue-component全局注册实例
2018/09/06 Javascript
基于JS判断对象是否是数组
2020/01/10 Javascript
Python通过命令开启http.server服务器的方法
2017/11/04 Python
Python之list对应元素求和的方法
2018/06/28 Python
Linux下多个Python版本安装教程
2018/08/15 Python
python使用openCV遍历文件夹里所有视频文件并保存成图片
2020/01/14 Python
Python3爬虫RedisDump的安装步骤
2021/02/20 Python
python上下文管理的使用场景实例讲解
2021/03/03 Python
CSS3中颜色线性渐变实战
2015/07/18 HTML / CSS
机工车间主任岗位职责
2014/03/05 职场文书
高三励志标语
2014/06/05 职场文书
商务经理岗位职责
2014/08/03 职场文书
开业庆典致辞
2015/08/01 职场文书
2015元旦感言
2015/12/09 职场文书
pytorch中的model=model.to(device)使用说明
2021/05/24 Python
一篇文章弄懂Python关键字、标识符和变量
2021/07/15 Python