python数字图像处理之骨架提取与分水岭算法


Posted in Python onApril 27, 2018

骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。

1、骨架提取

骨架提取,也叫二值图像细化。这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。

morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数。我们先来看Skeletonize()函数。

格式为:skimage.morphology.skeletonize(image)

输入和输出都是一幅二值图像。

例1:

from skimage import morphology,draw
import numpy as np
import matplotlib.pyplot as plt

#创建一个二值图像用于测试
image = np.zeros((400, 400))

#生成目标对象1(白色U型)
image[10:-10, 10:100] = 1
image[-100:-10, 10:-10] = 1
image[10:-10, -100:-10] = 1

#生成目标对象2(X型)
rs, cs = draw.line(250, 150, 10, 280)
for i in range(10):
 image[rs + i, cs] = 1
rs, cs = draw.line(10, 150, 250, 280)
for i in range(20):
 image[rs + i, cs] = 1

#生成目标对象3(O型)
ir, ic = np.indices(image.shape)
circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2
circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2
image[circle1] = 1
image[circle2] = 0

#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

生成一幅测试图像,上面有三个目标对象,分别进行骨架提取,结果如下:

python数字图像处理之骨架提取与分水岭算法

例2:利用系统自带的马图片进行骨架提取

from skimage import morphology,data,color
import matplotlib.pyplot as plt

image=color.rgb2gray(data.horse())
image=1-image #反相
#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

medial_axis就是中轴的意思,利用中轴变换方法计算前景(1值)目标对象的宽度,格式为:

skimage.morphology.medial_axis(image,mask=None,return_distance=False)

mask: 掩模。默认为None, 如果给定一个掩模,则在掩模内的像素值才执行骨架算法。

return_distance: bool型值,默认为False. 如果为True, 则除了返回骨架,还将距离变换值也同时返回。这里的距离指的是中轴线上的所有点与背景点的距离。

import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt

#编写一个函数,生成测试图像
def microstructure(l=256):
 n = 5
 x, y = np.ogrid[0:l, 0:l]
 mask = np.zeros((l, l))
 generator = np.random.RandomState(1)
 points = l * generator.rand(2, n**2)
 mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n))
 return mask > mask.mean()

data = microstructure(l=64) #生成测试图像

#计算中轴和距离变换值
skel, distance =morphology.medial_axis(data, return_distance=True)

#中轴上的点到背景像素点的距离
dist_on_skel = distance * skel

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
#用光谱色显示中轴
ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest')
ax2.contour(data, [0.5], colors='w') #显示轮廓线

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

2、分水岭算法

分水岭在地理学上就是指一个山脊,水通常会沿着山脊的两边流向不同的“汇水盆”。分水岭算法是一种用于图像分割的经典算法,是基于拓扑理论的数学形态学的分割方法。如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。

分水岭算法可以和距离变换结合,寻找“汇水盆地”和“分水岭界限”,从而对图像进行分割。二值图像的距离变换就是每一个像素点到最近非零值像素点的距离,我们可以使用scipy包来计算距离变换。

在下面的例子中,需要将两个重叠的圆分开。我们先计算圆上的这些白色像素点到黑色背景像素点的距离变换,选出距离变换中的最大值作为初始标记点(如果是反色的话,则是取最小值),从这些标记点开始的两个汇水盆越集越大,最后相交于分山岭。从分山岭处断开,我们就得到了两个分离的圆。

例1:基于距离变换的分山岭图像分割

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,feature

#创建两个带有重叠圆的图像
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)

#现在我们用分水岭算法分离两个圆
distance = ndi.distance_transform_edt(image) #距离变换
local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
       labels=image) #寻找峰值
markers = ndi.label(local_maxi)[0] #初始标记点
labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
ax1.set_title("Distance")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

分水岭算法也可以和梯度相结合,来实现图像分割。一般梯度图像在边缘处有较高的像素值,而在其它地方则有较低的像素值,理想情况 下,分山岭恰好在边缘。因此,我们可以根据梯度来寻找分山岭。

例2:基于梯度的分水岭图像分割

import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,color,data,filter

image =color.rgb2gray(data.camera())
denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声

#将梯度值低于10的作为开始标记点
markers = filter.rank.gradient(denoised, morphology.disk(5)) <10
markers = ndi.label(markers)[0]

gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度
labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
ax1.set_title("Gradient")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python基于Tkinter的HelloWorld入门实例
Jun 17 Python
一篇文章读懂Python赋值与拷贝
Apr 19 Python
Python分割指定页数的pdf文件方法
Oct 26 Python
在Python文件中指定Python解释器的方法
Feb 18 Python
python3实现字符串操作的实例代码
Apr 16 Python
24式加速你的Python(小结)
Jun 13 Python
对python 中re.sub,replace(),strip()的区别详解
Jul 22 Python
python pandas 时间日期的处理实现
Jul 30 Python
使用遗传算法求二元函数的最小值
Feb 11 Python
详解在Python中使用Torchmoji将文本转换为表情符号
Jul 27 Python
Python 使用生成器代替线程的方法
Aug 04 Python
Python用access判断文件是否被占用的实例方法
Dec 17 Python
python多线程之事件Event的使用详解
Apr 27 #Python
python线程池threadpool使用篇
Apr 27 #Python
Python实现删除时保留特定文件夹和文件的示例
Apr 27 #Python
python中yaml配置文件模块的使用详解
Apr 27 #Python
python 拷贝特定后缀名文件,并保留原始目录结构的实例
Apr 27 #Python
python中subprocess批量执行linux命令
Apr 27 #Python
python复制文件到指定目录的实例
Apr 27 #Python
You might like
PHP分页显示制作详细讲解
2008/11/19 PHP
分享一下贝贝成长进度的php代码
2012/09/14 PHP
php使用数组填充下拉列表框的方法
2015/03/31 PHP
PHP处理bmp格式图片的方法分析
2017/07/04 PHP
php实现文件上传基本验证
2020/03/04 PHP
快速保存网页中所有图片的方法
2006/06/23 Javascript
javascript学习基础笔记之DOM对象操作
2011/11/03 Javascript
JS根据年月获得当月天数的实现代码
2014/07/03 Javascript
bootstrap-treeview自定义双击事件实现方法
2016/01/09 Javascript
jQuery添加删除DOM元素方法详解
2016/01/18 Javascript
jQuery操作属性和样式详解
2016/04/13 Javascript
JS组件Bootstrap实现下拉菜单效果代码
2016/04/26 Javascript
Node.js开发教程之基于OnceIO框架实现文件上传和验证功能
2016/11/30 Javascript
基于vue2.0+vuex+localStorage开发的本地记事本示例
2017/02/28 Javascript
AngularJs实现聊天列表实时刷新功能
2017/06/15 Javascript
微信小程序将字符串生成二维码图片的操作方法
2018/07/17 Javascript
JS 创建对象的模式实例小结
2020/04/28 Javascript
js实现弹窗效果
2020/08/09 Javascript
微信小程序组件生命周期的踩坑记录
2021/03/03 Javascript
[30:55]完美世界DOTA2联赛PWL S2 Magma vs LBZS 第二场 11.18
2020/11/18 DOTA
python实现自动重启本程序的方法
2015/07/09 Python
Python有序查找算法之二分法实例分析
2017/12/11 Python
解决pandas 作图无法显示中文的问题
2018/05/24 Python
python实现推箱子游戏
2020/03/25 Python
Python机器学习之scikit-learn库中KNN算法的封装与使用方法
2018/12/14 Python
Python中super函数用法实例分析
2019/03/18 Python
详解pandas删除缺失数据(pd.dropna()方法)
2019/06/25 Python
对python中 math模块下 atan 和 atan2的区别详解
2020/01/17 Python
python 爬虫请求模块requests详解
2020/12/04 Python
canvas中普通动效与粒子动效的实现代码示例
2019/01/03 HTML / CSS
施华洛世奇德国官网:SWAROVSKI德国
2017/02/01 全球购物
星空联盟C# .net笔试题
2014/12/05 面试题
2014年城管个人工作总结
2014/12/08 职场文书
英文产品推荐信
2015/03/27 职场文书
2015年保洁工作总结范文
2015/04/28 职场文书
2021年国产动漫公司排行前十名,玄机科技上榜,第二推出过铠甲勇士
2022/03/18 杂记