详解Python操作RabbitMQ服务器消息队列的远程结果返回


Posted in Python onJune 30, 2016

先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4
RabbitMQ服务器

sudo apt-get install rabbitmq-server

Python使用RabbitMQ需要Pika库

sudo pip install pika

远程结果返回
消息发送端发送消息出去后没有结果返回。如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端。

处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队列用来接收返回的结果。其实在这里接收端、发送端的概念已经比较模糊了,因为发送端也同样要接收消息,接收端同样也要发送消息,所以这里笔者使用另外的示例来演示这一过程。

示例内容:假设有一个控制中心和一个计算节点,控制中心会将一个自然数N发送给计算节点,计算节点将N值加1后,返回给控制中心。这里用center.py模拟控制中心,compute.py模拟计算节点。

compute.py代码分析

#!/usr/bin/env python
#coding=utf8
import pika
 
#连接rabbitmq服务器
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()
 
#定义队列
channel.queue_declare(queue='compute_queue')
print ' [*] Waiting for n'
 
#将n值加1
def increase(n):
  return n + 1
 
#定义接收到消息的处理方法
def request(ch, method, properties, body):
  print " [.] increase(%s)" % (body,)
 
  response = increase(int(body))
 
  #将计算结果发送回控制中心
  ch.basic_publish(exchange='',
           routing_key=properties.reply_to,
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
channel.basic_consume(request, queue='compute_queue')
 
channel.start_consuming()

计算节点的代码比较简单,值得一提的是,原来的接收方法都是直接将消息打印出来,这边进行了加一的计算,并将结果发送回控制中心。

center.py代码分析

#!/usr/bin/env python
#coding=utf8
import pika
 
class Center(object):
  def __init__(self):
    self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
 
    self.channel = self.connection.channel()
     
    #定义接收返回消息的队列
    result = self.channel.queue_declare(exclusive=True)
    self.callback_queue = result.method.queue
 
    self.channel.basic_consume(self.on_response,
                  no_ack=True,
                  queue=self.callback_queue)
 
  #定义接收到返回消息的处理方法
  def on_response(self, ch, method, props, body):
    self.response = body
   
   
  def request(self, n):
    self.response = None
    #发送计算请求,并声明返回队列
    self.channel.basic_publish(exchange='',
                  routing_key='compute_queue',
                  properties=pika.BasicProperties(
                     reply_to = self.callback_queue,
                     ),
                  body=str(n))
    #接收返回的数据
    while self.response is None:
      self.connection.process_data_events()
    return int(self.response)
 
center = Center()
 
print " [x] Requesting increase(30)"
response = center.request(30)
print " [.] Got %r" % (response,)

上例代码定义了接收返回数据的队列和处理方法,并且在发送请求的时候将该队列赋值给reply_to,在计算节点代码中就是通过这个参数来获取返回队列的。

打开两个终端,一个运行代码python compute.py,另外一个终端运行center.py,如果执行成功,应该就能看到效果了。

笔者在测试的时候,出了些小问题,就是在center.py发送消息时没有指明返回队列,结果compute.py那边在计算完结果要发回数据时报错,提示routing_key不存在,再次运行也报错。用rabbitmqctl list_queues查看队列,发现compute_queue队列有1条数据,每次重新运行compute.py的时候,都会重新处理这条数据。后来使用/etc/init.d/rabbitmq-server restart重新启动下rabbitmq就ok了。

相互关联编号correlation id
上一遍演示了远程结果返回的示例,但是有一个没有提到,就是correlation id,这个是个什么东东呢?

假设有多个计算节点,控制中心开启多个线程,往这些计算节点发送数字,要求计算结果并返回,但是控制中心只开启了一个队列,所有线程都是从这个队列里获取消息,每个线程如何确定收到的消息就是该线程对应的呢?这个就是correlation id的用处了。correlation翻译成中文就是相互关联,也表达了这个意思。

correlation id运行原理:控制中心发送计算请求时设置correlation id,而后计算节点将计算结果,连同接收到的correlation id一起返回,这样控制中心就能通过correlation id来标识请求。其实correlation id也可以理解为请求的唯一标识码。

示例内容:控制中心开启多个线程,每个线程都发起一次计算请求,通过correlation id,每个线程都能准确收到相应的计算结果。

compute.py代码分析

和上面一篇相比,只需修改一个地方:将计算结果发送回控制中心时,增加参数correlation_id的设定,该参数的值其实是从控制中心发送过来的,这里只是再次发送回去。代码如下:

#!/usr/bin/env python
#coding=utf8
import pika
 
#连接rabbitmq服务器
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()
 
#定义队列
channel.queue_declare(queue='compute_queue')
print ' [*] Waiting for n'
 
#将n值加1
def increase(n):
  return n + 1
 
#定义接收到消息的处理方法
def request(ch, method, props, body):
  print " [.] increase(%s)" % (body,)
 
  response = increase(int(body))
 
  #将计算结果发送回控制中心,增加correlation_id的设定
  ch.basic_publish(exchange='',
           routing_key=props.reply_to,
           properties=pika.BasicProperties(correlation_id = \
                           props.correlation_id),
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
channel.basic_consume(request, queue='compute_queue')
 
channel.start_consuming()

center.py代码分析

控制中心代码稍微复杂些,其中比较关键的有三个地方:

使用python的uuid来产生唯一的correlation_id。
发送计算请求时,设定参数correlation_id。
定义一个字典来保存返回的数据,并且键值为相应线程产生的correlation_id。
代码如下:

#!/usr/bin/env python
#coding=utf8
import pika, threading, uuid
 
#自定义线程类,继承threading.Thread
class MyThread(threading.Thread):
  def __init__(self, func, num):
    super(MyThread, self).__init__()
    self.func = func
    self.num = num
 
  def run(self):
    print " [x] Requesting increase(%d)" % self.num
    response = self.func(self.num)
    print " [.] increase(%d)=%d" % (self.num, response)
 
#控制中心类
class Center(object):
  def __init__(self):
    self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
 
    self.channel = self.connection.channel()
 
    #定义接收返回消息的队列
    result = self.channel.queue_declare(exclusive=True)
    self.callback_queue = result.method.queue
 
    self.channel.basic_consume(self.on_response,
                  no_ack=True,
                  queue=self.callback_queue)
 
    #返回的结果都会存储在该字典里
    self.response = {}
 
  #定义接收到返回消息的处理方法
  def on_response(self, ch, method, props, body):
    self.response[props.correlation_id] = body
 
  def request(self, n):
    corr_id = str(uuid.uuid4())
    self.response[corr_id] = None
 
    #发送计算请求,并设定返回队列和correlation_id
    self.channel.basic_publish(exchange='',
                  routing_key='compute_queue',
                  properties=pika.BasicProperties(
                     reply_to = self.callback_queue,
                     correlation_id = corr_id,
                     ),
                  body=str(n))
    #接收返回的数据
    while self.response[corr_id] is None:
      self.connection.process_data_events()
    return int(self.response[corr_id])
 
center = Center()
#发起5次计算请求
nums= [10, 20, 30, 40 ,50]
threads = []
for num in nums:
  threads.append(MyThread(center.request, num))
for thread in threads:
  thread.start()
for thread in threads:
  thread.join()

笔者开启了两个终端,来运行compute.py,开启一个终端来运行center.py,最后结果输出截图如下:

详解Python操作RabbitMQ服务器消息队列的远程结果返回

可以看到虽然获取的结果不是顺序输出,但是结果和源数据都是对应的。

这边示例的做法就是创建一个队列,使用correlation id来标识每次请求。也有做法可以不使用correlation id,就是每请求一次,就创建一个临时队列,不过这样太消耗性能了,官方也不推荐这么做。

Python 相关文章推荐
python基础教程之简单入门说明(变量和控制语言使用方法)
Mar 25 Python
Python的__builtin__模块中的一些要点知识
May 02 Python
Windows上使用virtualenv搭建Python+Flask开发环境
Jun 07 Python
Python抓取手机号归属地信息示例代码
Nov 28 Python
Python 网页解析HTMLParse的实例详解
Aug 10 Python
python下实现二叉堆以及堆排序的示例
Sep 29 Python
Python使用pickle模块报错EOFError Ran out of input的解决方法
Aug 16 Python
Python中filter与lambda的结合使用详解
Dec 24 Python
python统计字符的个数代码实例
Feb 07 Python
Python requests设置代理的方法步骤
Feb 23 Python
Python openpyxl 插入折线图实例
Apr 17 Python
Python+tkinter实现高清图片保存
Mar 13 Python
Python操作RabbitMQ服务器实现消息队列的路由功能
Jun 29 #Python
Python通过RabbitMQ服务器实现交换机功能的实例教程
Jun 29 #Python
Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程
Jun 29 #Python
Python的消息队列包SnakeMQ使用初探
Jun 29 #Python
Python中线程的MQ消息队列实现以及消息队列的优点解析
Jun 29 #Python
深入理解Python中装饰器的用法
Jun 28 #Python
Python中的迭代器与生成器高级用法解析
Jun 28 #Python
You might like
手把手教你使用DedeCms V3的在线采集图文教程
2007/04/03 PHP
基于PHP+Ajax实现表单验证的详解
2013/06/25 PHP
深入解析PHP中的(伪)多线程与多进程
2013/07/01 PHP
php设置页面超时时间解决方法
2015/09/22 PHP
学习php设计模式 php实现单例模式(singleton)
2015/12/07 PHP
php rmdir使用递归函数删除非空目录实例详解
2016/10/20 PHP
很全的显示阴历(农历)日期的js代码
2009/01/01 Javascript
IE与FireFox中的childNodes区别
2011/10/20 Javascript
动态加载脚本提升javascript性能
2014/02/24 Javascript
全国省市二级联动下拉菜单 js版
2016/05/10 Javascript
vue.js中$watch的用法示例
2016/10/04 Javascript
bootstrap datetimepicker日期插件超详细使用方法介绍
2017/02/23 Javascript
jQuery插件echarts实现的多柱子柱状图效果示例【附demo源码下载】
2017/03/04 Javascript
Vue 2.x教程之基础API
2017/03/06 Javascript
妙用Angularjs实现表格按指定列排序
2017/06/23 Javascript
webpack打包js的方法
2018/03/12 Javascript
vue.js中proxyTable 转发请求的实现方法
2018/09/20 Javascript
微信小程序实现留言功能
2018/10/31 Javascript
Layui数据表格跳转到指定页的实现方法
2019/09/05 Javascript
JS实现图片切换特效
2019/12/23 Javascript
vue中利用iscroll.js解决pc端滚动问题
2020/02/15 Javascript
js实现简单的贪吃蛇游戏
2020/04/23 Javascript
Vue+ElementUI 中级联选择器Bug问题的解决
2020/07/31 Javascript
python调用Moxa PCOMM Lite通过串口Ymodem协议实现发送文件
2014/08/15 Python
python如何在终端里面显示一张图片
2016/08/17 Python
Python实现读取并保存文件的类
2017/05/11 Python
Python线程障碍对象Barrier原理详解
2019/12/02 Python
python如何通过pyqt5实现进度条
2020/01/20 Python
pandas DataFrame 数据选取,修改,切片的实现
2020/04/24 Python
CSS3动画和HTML5新特性详解
2020/08/31 HTML / CSS
HTML5之SVG 2D入门1—SVG(可缩放矢量图形)概述
2013/01/30 HTML / CSS
造型师求职自荐信
2013/09/27 职场文书
八年级数学教学反思
2014/01/31 职场文书
《菜园里》教学反思
2014/04/17 职场文书
领导激励员工的演讲稿,各种会上用得到,建议收藏
2019/08/13 职场文书
详解使用内网穿透工具Ngrok代理本地服务
2022/03/31 Servers