详解Python操作RabbitMQ服务器消息队列的远程结果返回


Posted in Python onJune 30, 2016

先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4
RabbitMQ服务器

sudo apt-get install rabbitmq-server

Python使用RabbitMQ需要Pika库

sudo pip install pika

远程结果返回
消息发送端发送消息出去后没有结果返回。如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端。

处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队列用来接收返回的结果。其实在这里接收端、发送端的概念已经比较模糊了,因为发送端也同样要接收消息,接收端同样也要发送消息,所以这里笔者使用另外的示例来演示这一过程。

示例内容:假设有一个控制中心和一个计算节点,控制中心会将一个自然数N发送给计算节点,计算节点将N值加1后,返回给控制中心。这里用center.py模拟控制中心,compute.py模拟计算节点。

compute.py代码分析

#!/usr/bin/env python
#coding=utf8
import pika
 
#连接rabbitmq服务器
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()
 
#定义队列
channel.queue_declare(queue='compute_queue')
print ' [*] Waiting for n'
 
#将n值加1
def increase(n):
  return n + 1
 
#定义接收到消息的处理方法
def request(ch, method, properties, body):
  print " [.] increase(%s)" % (body,)
 
  response = increase(int(body))
 
  #将计算结果发送回控制中心
  ch.basic_publish(exchange='',
           routing_key=properties.reply_to,
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
channel.basic_consume(request, queue='compute_queue')
 
channel.start_consuming()

计算节点的代码比较简单,值得一提的是,原来的接收方法都是直接将消息打印出来,这边进行了加一的计算,并将结果发送回控制中心。

center.py代码分析

#!/usr/bin/env python
#coding=utf8
import pika
 
class Center(object):
  def __init__(self):
    self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
 
    self.channel = self.connection.channel()
     
    #定义接收返回消息的队列
    result = self.channel.queue_declare(exclusive=True)
    self.callback_queue = result.method.queue
 
    self.channel.basic_consume(self.on_response,
                  no_ack=True,
                  queue=self.callback_queue)
 
  #定义接收到返回消息的处理方法
  def on_response(self, ch, method, props, body):
    self.response = body
   
   
  def request(self, n):
    self.response = None
    #发送计算请求,并声明返回队列
    self.channel.basic_publish(exchange='',
                  routing_key='compute_queue',
                  properties=pika.BasicProperties(
                     reply_to = self.callback_queue,
                     ),
                  body=str(n))
    #接收返回的数据
    while self.response is None:
      self.connection.process_data_events()
    return int(self.response)
 
center = Center()
 
print " [x] Requesting increase(30)"
response = center.request(30)
print " [.] Got %r" % (response,)

上例代码定义了接收返回数据的队列和处理方法,并且在发送请求的时候将该队列赋值给reply_to,在计算节点代码中就是通过这个参数来获取返回队列的。

打开两个终端,一个运行代码python compute.py,另外一个终端运行center.py,如果执行成功,应该就能看到效果了。

笔者在测试的时候,出了些小问题,就是在center.py发送消息时没有指明返回队列,结果compute.py那边在计算完结果要发回数据时报错,提示routing_key不存在,再次运行也报错。用rabbitmqctl list_queues查看队列,发现compute_queue队列有1条数据,每次重新运行compute.py的时候,都会重新处理这条数据。后来使用/etc/init.d/rabbitmq-server restart重新启动下rabbitmq就ok了。

相互关联编号correlation id
上一遍演示了远程结果返回的示例,但是有一个没有提到,就是correlation id,这个是个什么东东呢?

假设有多个计算节点,控制中心开启多个线程,往这些计算节点发送数字,要求计算结果并返回,但是控制中心只开启了一个队列,所有线程都是从这个队列里获取消息,每个线程如何确定收到的消息就是该线程对应的呢?这个就是correlation id的用处了。correlation翻译成中文就是相互关联,也表达了这个意思。

correlation id运行原理:控制中心发送计算请求时设置correlation id,而后计算节点将计算结果,连同接收到的correlation id一起返回,这样控制中心就能通过correlation id来标识请求。其实correlation id也可以理解为请求的唯一标识码。

示例内容:控制中心开启多个线程,每个线程都发起一次计算请求,通过correlation id,每个线程都能准确收到相应的计算结果。

compute.py代码分析

和上面一篇相比,只需修改一个地方:将计算结果发送回控制中心时,增加参数correlation_id的设定,该参数的值其实是从控制中心发送过来的,这里只是再次发送回去。代码如下:

#!/usr/bin/env python
#coding=utf8
import pika
 
#连接rabbitmq服务器
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()
 
#定义队列
channel.queue_declare(queue='compute_queue')
print ' [*] Waiting for n'
 
#将n值加1
def increase(n):
  return n + 1
 
#定义接收到消息的处理方法
def request(ch, method, props, body):
  print " [.] increase(%s)" % (body,)
 
  response = increase(int(body))
 
  #将计算结果发送回控制中心,增加correlation_id的设定
  ch.basic_publish(exchange='',
           routing_key=props.reply_to,
           properties=pika.BasicProperties(correlation_id = \
                           props.correlation_id),
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
channel.basic_consume(request, queue='compute_queue')
 
channel.start_consuming()

center.py代码分析

控制中心代码稍微复杂些,其中比较关键的有三个地方:

使用python的uuid来产生唯一的correlation_id。
发送计算请求时,设定参数correlation_id。
定义一个字典来保存返回的数据,并且键值为相应线程产生的correlation_id。
代码如下:

#!/usr/bin/env python
#coding=utf8
import pika, threading, uuid
 
#自定义线程类,继承threading.Thread
class MyThread(threading.Thread):
  def __init__(self, func, num):
    super(MyThread, self).__init__()
    self.func = func
    self.num = num
 
  def run(self):
    print " [x] Requesting increase(%d)" % self.num
    response = self.func(self.num)
    print " [.] increase(%d)=%d" % (self.num, response)
 
#控制中心类
class Center(object):
  def __init__(self):
    self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
 
    self.channel = self.connection.channel()
 
    #定义接收返回消息的队列
    result = self.channel.queue_declare(exclusive=True)
    self.callback_queue = result.method.queue
 
    self.channel.basic_consume(self.on_response,
                  no_ack=True,
                  queue=self.callback_queue)
 
    #返回的结果都会存储在该字典里
    self.response = {}
 
  #定义接收到返回消息的处理方法
  def on_response(self, ch, method, props, body):
    self.response[props.correlation_id] = body
 
  def request(self, n):
    corr_id = str(uuid.uuid4())
    self.response[corr_id] = None
 
    #发送计算请求,并设定返回队列和correlation_id
    self.channel.basic_publish(exchange='',
                  routing_key='compute_queue',
                  properties=pika.BasicProperties(
                     reply_to = self.callback_queue,
                     correlation_id = corr_id,
                     ),
                  body=str(n))
    #接收返回的数据
    while self.response[corr_id] is None:
      self.connection.process_data_events()
    return int(self.response[corr_id])
 
center = Center()
#发起5次计算请求
nums= [10, 20, 30, 40 ,50]
threads = []
for num in nums:
  threads.append(MyThread(center.request, num))
for thread in threads:
  thread.start()
for thread in threads:
  thread.join()

笔者开启了两个终端,来运行compute.py,开启一个终端来运行center.py,最后结果输出截图如下:

详解Python操作RabbitMQ服务器消息队列的远程结果返回

可以看到虽然获取的结果不是顺序输出,但是结果和源数据都是对应的。

这边示例的做法就是创建一个队列,使用correlation id来标识每次请求。也有做法可以不使用correlation id,就是每请求一次,就创建一个临时队列,不过这样太消耗性能了,官方也不推荐这么做。

Python 相关文章推荐
Python模块学习 datetime介绍
Aug 27 Python
总结网络IO模型与select模型的Python实例讲解
Jun 27 Python
python 巧用正则寻找字符串中的特定字符的位置方法
May 02 Python
Python实现的网页截图功能【PyQt4与selenium组件】
Jul 12 Python
TensorFlow实现iris数据集线性回归
Sep 07 Python
Pyorch之numpy与torch之间相互转换方式
Dec 31 Python
基于pygame实现童年掌机打砖块游戏
Feb 25 Python
django创建css文件夹的具体方法
Jul 31 Python
Python xlrd/xlwt 创建excel文件及常用操作
Sep 24 Python
python开发一款翻译工具
Oct 10 Python
python中Pexpect的工作流程实例讲解
Mar 02 Python
Python开发工具Pycharm的安装以及使用步骤总结
Jun 24 Python
Python操作RabbitMQ服务器实现消息队列的路由功能
Jun 29 #Python
Python通过RabbitMQ服务器实现交换机功能的实例教程
Jun 29 #Python
Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程
Jun 29 #Python
Python的消息队列包SnakeMQ使用初探
Jun 29 #Python
Python中线程的MQ消息队列实现以及消息队列的优点解析
Jun 29 #Python
深入理解Python中装饰器的用法
Jun 28 #Python
Python中的迭代器与生成器高级用法解析
Jun 28 #Python
You might like
php中DOMElement操作xml文档实例演示
2013/03/26 PHP
PHP token验证生成原理实例分析
2019/06/05 PHP
Thinkphp5 自定义上传文件名的实现方法
2019/07/23 PHP
用js实现的模拟jquery的animate自定义动画(2.5K)
2010/07/20 Javascript
JavaScript中的noscript元素属性位置及作用介绍
2013/04/11 Javascript
jquery自定义类似$.ajax()的方法实现代码
2013/08/13 Javascript
node.js中的buffer.toJSON方法使用说明
2014/12/14 Javascript
jquery实现初次打开有动画效果的网页TAB切换代码
2015/09/06 Javascript
对js中回调函数的一些看法
2016/08/29 Javascript
JavaScript装饰器函数(Decorator)实例详解
2017/03/30 Javascript
js获取浏览器的各种属性
2017/04/27 Javascript
详解webpack自动生成html页面
2017/06/29 Javascript
webpack4 处理SCSS的方法示例
2018/09/03 Javascript
详解Angular5/Angular6项目如何添加热更新(HMR)功能
2018/10/10 Javascript
微信JS-SDK updateAppMessageShareData安卓不能自定义分享详解
2019/03/29 Javascript
React中使用外部样式的3种方式(小结)
2019/05/28 Javascript
JS字符串常用操作方法实例小结
2019/06/24 Javascript
微信小程序实现语音识别转文字功能及遇到的坑
2019/08/02 Javascript
JS常见错误(Error)及处理方案详解
2020/07/02 Javascript
[07:06]2018DOTA2国际邀请赛寻真——卫冕冠军Team Liquid
2018/08/10 DOTA
Python两个整数相除得到浮点数值的方法
2015/03/18 Python
Python字符串逐字符或逐词反转方法
2015/05/21 Python
让Python代码更快运行的5种方法
2015/06/21 Python
numpy使用fromstring创建矩阵的实例
2018/06/15 Python
python实现的多任务版udp聊天器功能案例
2019/11/13 Python
如何解决cmd运行python提示不是内部命令
2020/07/01 Python
python3:excel操作之读取数据并返回字典 + 写入的案例
2020/09/01 Python
Petmate品牌官方网站:宠物用品
2018/11/25 全球购物
文员的职业生涯规划发展方向
2014/02/08 职场文书
弘扬雷锋精神活动演讲稿
2014/03/04 职场文书
优秀的个人求职信范文
2014/05/09 职场文书
司法局火灾防控方案
2014/06/05 职场文书
收银员岗位职责
2015/02/03 职场文书
2015年教师党员个人总结
2015/11/24 职场文书
MySQL数据库优化之通过索引解决SQL性能问题
2022/04/10 MySQL
详解Flutter自定义应用程序内键盘的实现方法
2022/06/14 Java/Android