python 爬取京东指定商品评论并进行情感分析


Posted in Python onMay 27, 2021

项目地址

https://github.com/DA1YAYUAN/JD-comments-sentiment-analysis

爬取京东商城中指定商品下的用户评论,对数据预处理后基于SnowNLP的sentiment模块对文本进行情感分析。

运行环境

  • Mac OS X
  • Python3.7 requirements.txt
  • Pycharm

运行方法

数据爬取(jd.comment.py)

  1. 启动jd_comment.py,建议修改jd_comment.py中变量user-agent为自己浏览器用户代理
  2. 输入京东商品完整URL
  3. 得到京东评论词云,存放于jd_ciyun.jpg(词云轮廓形状存放于jdicon.jpg)
  4. 得到京东评论数据,存放于jd_comment.csv
import os
import time
import json
import random
import csv
import re

import jieba
import requests
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from wordcloud import WordCloud

# 词云形状图片
WC_MASK_IMG = 'jdicon.jpg'
# 评论数据保存文件
COMMENT_FILE_PATH = 'jd_comment.txt'
# 词云字体
WC_FONT_PATH = '/Library/Fonts/Songti.ttc'


def spider_comment(page=0, key=0):
    """
    爬取京东指定页的评价数据
    :param page: 爬取第几,默认值为0
    """

    url = 'https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv4646&productId=' + key + '' \
          '&score=0&sortType=5&page=%s&pageSize=10&isShadowSku=0&fold=1' % page
    kv = {'user-agent': 'Mozilla/5.0', 'Referer': 'https://item.jd.com/'+ key + '.html'}#原本key不输入值,默认为《三体》

    try:
        r = requests.get(url, headers=kv)
        r.raise_for_status()
    except:
        print('爬取失败')
    # 截取json数据字符串
    r_json_str = r.text[26:-2]
    # 字符串转json对象
    r_json_obj = json.loads(r_json_str)
    # 获取评价列表数据
    r_json_comments = r_json_obj['comments']
    # 遍历评论对象列表
    for r_json_comment in r_json_comments:
        # 以追加模式换行写入每条评价
        with open(COMMENT_FILE_PATH, 'a+') as file:
            file.write(r_json_comment['content'] + '\n')
        # 打印评论对象中的评论内容
        print(r_json_comment['content'])


def batch_spider_comment():
    """
        批量爬取某东评价
        """
    # 写入数据前先清空之前的数据
    if os.path.exists(COMMENT_FILE_PATH):
        os.remove(COMMENT_FILE_PATH)
    key = input("Please enter the address:")
    key = re.sub("\D","",key)
    #通过range来设定爬取的页面数
    for i in range(10):
        spider_comment(i,key)
        # 模拟用户浏览,设置一个爬虫间隔,防止ip被封
        time.sleep(random.random() * 5)


def cut_word():
    """
    对数据分词
    :return: 分词后的数据
    """
    with open(COMMENT_FILE_PATH) as file:
        comment_txt = file.read()
        wordlist = jieba.cut(comment_txt, cut_all=False)#精确模式
        wl = " ".join(wordlist)
        print(wl)
        return wl


def create_word_cloud():
    """44144127306
    生成词云
    :return:
    """
    # 设置词云形状图片
    wc_mask = np.array(Image.open(WC_MASK_IMG))
    # 设置词云的一些配置,如:字体,背景色,词云形状,大小
    wc = WordCloud(background_color="white", max_words=2000, mask=wc_mask, scale=4,
                   max_font_size=50, random_state=42, font_path=WC_FONT_PATH)
    # 生成词云
    wc.generate(cut_word())
    # 在只设置mask的情况下,你将会得到一个拥有图片形状的词云
    plt.imshow(wc, interpolation="bilinear")
    plt.axis("off")
    plt.figure()
    plt.show()
    wc.to_file("jd_ciyun.jpg")


def txt_change_to_csv():
    with open('jd_comment.csv', 'w+', encoding="utf8", newline='')as c:
        writer_csv = csv.writer(c, dialect="excel")
        with open("jd_comment.txt", 'r', encoding='utf8')as f:
            # print(f.readlines())
            for line in f.readlines():
                # 去掉str左右端的空格并以空格分割成list
                line_list = line.strip('\n').split(',')
                print(line_list)
                writer_csv.writerow(line_list)

if __name__ == '__main__':
    # 爬取数据
    batch_spider_comment()

    #转换数据
    txt_change_to_csv()

    # 生成词云
    create_word_cloud()

模型训练(train.py)

  1. 准备正负语料集online_shopping_10_cats.csv,分别存入negative.txt和positive.txt
  2. 启动train.py,新建文件sentiment.marshal,存入训练后的模型
  3. 找到外部库中snownlp中sentiment模块,将训练得到的sentiment.marshal.3文件覆盖sentiment模块中自带的sentiment.marshal.3
# -*-coding:utf-8-*-

def train():
    from snownlp import sentiment
    print("开始训练数据集...")
    sentiment.train('negative.txt', 'positive.txt')#自己准备数据集
    sentiment.save('sentiment.marshal')#保存训练模型
    #python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3
    "训练完成后,将训练完的模型,替换sentiment中的模型"

def main():
    train()  # 训练正负向商品评论数据集
    print("数据集训练完成!")

if __name__ == '__main__':
    main()

情感分析(sentiment.analysis.py)

  1. 启动sentiment.analysis.py
  2. 开始对jd_comment.csv中评论进行数据处理,处理后文件存入processed_comment_data.csv
  3. sentiment模块根据sentiment.marshal.3对评论进行情感评分,评分结果存入result.csv
  4. 评分结果可视化,生成文件fig.png
from snownlp import sentiment
import pandas as pd
import snownlp
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

#from word_cloud import word_cloud_creation, word_cloud_implementation, word_cloud_settings

def read_csv():
    '''读取商品评论数据文件'''
    comment_data = pd.read_csv('jd_comment.csv', encoding='utf-8',
                               sep='\n', index_col=None)
    #返回评论作为参数
    return comment_data


def clean_data(data):
    '''数据清洗'''
    df = data.dropna()  # 消除缺失数据 NaN为缺失数据
    df = pd.DataFrame(df.iloc[:, 0].unique())  # 数据去重
    return df
    # print('数据清洗后:', len(df))


def clean_repeat_word(raw_str, reverse=False):
    '''去除评论中的重复使用的词汇'''
    if reverse:
        raw_str = raw_str[::-1]
    res_str = ''
    for i in raw_str:
        if i not in res_str:
            res_str += i
    if reverse:
        res_str = res_str[::-1]
    return res_str


def processed_data(filename):
    '''清洗完毕的数据,并保存'''
    df = clean_data(read_csv())#数据清洗
    ser1 = df.iloc[:, 0].apply(clean_repeat_word)#去除重复词汇
    df2 = pd.DataFrame(ser1.apply(clean_repeat_word, reverse=True))
    df2.to_csv(f'{filename}.csv', encoding='utf-8', index_label=None, index=None)


def train():
    '''训练正向和负向情感数据集,并保存训练模型'''
    sentiment.train('negative.txt', 'positive.txt')
    sentiment.save('seg.marshal')#python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3


sentiment_list = []

res_list = []


def test(filename, to_filename):
    '''商品评论-情感分析-测试'''
    with open(f'{filename}.csv', 'r', encoding='utf-8') as fr:
        for line in fr.readlines():
            s = snownlp.SnowNLP(line)
            #调用snownlp中情感评分s.sentiments
            if s.sentiments > 0.6:
                res = '喜欢'
                res_list.append(1)
            elif s.sentiments < 0.4:
                res = '不喜欢'
                res_list.append(-1)
            else:
                res = '一般'
                res_list.append(0)
            sent_dict = {
                '情感分析结果': s.sentiments,
                '评价倾向': res,
                '商品评论': line.replace('\n', '')
            }
            sentiment_list.append(sent_dict)
            print(sent_dict)
        df = pd.DataFrame(sentiment_list)
        df.to_csv(f'{to_filename}.csv', index=None, encoding='utf-8',
                  index_label=None, mode='w')


def data_virtualization():
    '''分析结果可视化,以条形图为测试样例'''
    font = FontProperties(fname='/System/Library/Fonts/Supplemental/Songti.ttc', size=14)
    likes = len([i for i in res_list if i == 1])
    common = len([i for i in res_list if i == 0])
    unlikes = len([i for i in res_list if i == -1])

    plt.bar([1], [likes], label='喜欢')#(坐标,评论长度,名称)
    plt.bar([2], [common], label='一般')
    plt.bar([3], [unlikes], label='不喜欢')

    x=[1,2,3]
    label=['喜欢','一般','不喜欢']
    plt.xticks(x, label)

    plt.legend()#插入图例
    plt.xlabel('评价种类')
    plt.ylabel('评价数目')
    plt.title(u'商品评论情感分析结果-条形图', FontProperties=font)
    plt.savefig('fig.png')
    plt.show()
'''
def word_cloud_show():
    #将商品评论转为高频词汇的词云
    wl = word_cloud_creation('jd_comment.csv')
    wc = word_cloud_settings()
    word_cloud_implementation(wl, wc)
'''

def main():
     processed_data('processed_comment_data')#数据清洗
     #train()  # 训练正负向商品评论数据集

     test('jd_comment', 'result')

     print('数据可视化中...')
     data_virtualization()  # 数据可视化

     print('python程序运行结束。')

if __name__ == '__main__':
    main()

 

词云轮廓图

python 爬取京东指定商品评论并进行情感分析

商品评论词云

python 爬取京东指定商品评论并进行情感分析

情感分析结果可视化

python 爬取京东指定商品评论并进行情感分析

以上就是python 爬取京东指定商品评论并进行情感分析的详细内容,更多关于python 爬取京东评论并进行情感分析的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python中用Ctrl+C终止多线程程序的问题解决
Mar 30 Python
Python字符串替换实例分析
May 11 Python
python中类和实例如何绑定属性与方法示例详解
Aug 18 Python
Python random模块用法解析及简单示例
Dec 18 Python
在IPython中进行Python程序执行时间的测量方法
Nov 01 Python
pyqt5与matplotlib的完美结合实例
Jun 21 Python
python调用pyaudio使用麦克风录制wav声音文件的教程
Jun 26 Python
pandas中的series数据类型详解
Jul 06 Python
python os.fork() 循环输出方法
Aug 08 Python
python实现超市商品销售管理系统
Nov 22 Python
利用pandas向一个csv文件追加写入数据的实现示例
Apr 23 Python
Python实现打乒乓小游戏
Sep 25 Python
python b站视频下载的五种版本
May 27 #Python
教你怎么用python selenium实现自动化测试
Python Django框架介绍之模板标签及模板的继承
May 27 #Python
python 算法题——快乐数的多种解法
May 27 #Python
用Python监控你的朋友都在浏览哪些网站?
Python图片处理之图片裁剪教程
用Python进行栅格数据的分区统计和批量提取
You might like
PHP开发中的错误收集,不定期更新。
2011/02/03 PHP
PHP实现的简单三角形、矩形周长面积计算器分享
2014/11/18 PHP
PHP中浮点数计算比较及取整不准确的解决方法
2015/01/09 PHP
php 解析xml 的四种方法详细介绍
2016/10/26 PHP
PHP数据库操作四:mongodb用法分析
2017/08/16 PHP
Laravel框架搜索分页功能示例
2019/02/01 PHP
JavaScript 学习笔记(十三)Dom创建表格
2010/01/21 Javascript
Javascript Cookie读写删除操作的函数
2010/03/02 Javascript
jquery 自定义容器下雨效果可将下雨图标改为其他
2014/04/23 Javascript
jQuery插件HighCharts实现2D柱状图、折线图的组合多轴图效果示例【附demo源码下载】
2017/03/09 Javascript
JavaScript实现分页效果
2017/03/28 Javascript
ES6学习笔记之正则表达式和字符串正则方法分析
2017/04/25 Javascript
vue.js select下拉框绑定和取值方法
2018/03/03 Javascript
vue-cli脚手架的安装教程图解
2018/09/02 Javascript
vue拖拽组件 vuedraggable API options实现盒子之间相互拖拽排序
2019/07/08 Javascript
Vue实现浏览器打印功能的代码
2020/04/17 Javascript
Python使用PDFMiner解析PDF代码实例
2017/03/27 Python
python中requests和https使用简单示例
2018/01/18 Python
对python中词典的values值的修改或新增KEY详解
2019/01/20 Python
Django 查询数据库并返回页面的例子
2019/08/12 Python
python程序输出无内容的解决方式
2020/04/09 Python
可以随进度显示不同颜色的css3进度条分享
2014/04/11 HTML / CSS
IE8下CSS3选择器nth-child() 不兼容问题的解决方法
2016/11/16 HTML / CSS
记一次高分屏下canvas模糊问题
2020/02/17 HTML / CSS
英国体育器材进口商店:UK Sport Imports
2017/03/14 全球购物
Sephora丝芙兰泰国官方网站:国际知名化妆品购物
2017/11/15 全球购物
Luxplus瑞典:香水和美容护理折扣
2018/01/28 全球购物
一些关于MySql加速和优化的面试题
2014/01/30 面试题
公益活动邀请函
2014/02/05 职场文书
大学生心理活动总结
2014/07/04 职场文书
关于青春的演讲稿500字
2014/08/22 职场文书
幼儿学前班评语
2014/12/29 职场文书
大学生村官工作总结2015
2015/04/09 职场文书
2015年保险公司内勤工作总结
2015/05/23 职场文书
导游词之江南园林狮子林
2019/09/16 职场文书
Netty客户端接入流程NioSocketChannel创建解析
2022/03/25 Java/Android