pytorch 实现变分自动编码器的操作


Posted in Python onMay 24, 2021

本来以为自动编码器是很简单的东西,但是也是看了好多资料仍然不太懂它的原理。先把代码记录下来,有时间好好研究。

这个例子是用MNIST数据集生成为例子

# -*- coding: utf-8 -*-
"""
Created on Fri Oct 12 11:42:19 2018
@author: www
""" 
import os 
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision.datasets import MNIST
from torchvision import transforms as tfs
from torchvision.utils import save_image 
im_tfs = tfs.Compose([
    tfs.ToTensor(),
    tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 标准化
])
 
train_set = MNIST('E:\data', transform=im_tfs)
train_data = DataLoader(train_set, batch_size=128, shuffle=True)
 
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
 
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20) # mean
        self.fc22 = nn.Linear(400, 20) # var
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
 
    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)
 
    def reparametrize(self, mu, logvar):
        std = logvar.mul(0.5).exp_()
        eps = torch.FloatTensor(std.size()).normal_()
        if torch.cuda.is_available():
            eps = Variable(eps.cuda())
        else:
            eps = Variable(eps)
        return eps.mul(std).add_(mu)
 
    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return F.tanh(self.fc4(h3))
 
    def forward(self, x):
        mu, logvar = self.encode(x) # 编码
        z = self.reparametrize(mu, logvar) # 重新参数化成正态分布
        return self.decode(z), mu, logvar # 解码,同时输出均值方差 
 
net = VAE() # 实例化网络
if torch.cuda.is_available():
    net = net.cuda()
    
x, _ = train_set[0]
x = x.view(x.shape[0], -1)
if torch.cuda.is_available():
    x = x.cuda()
x = Variable(x)
_, mu, var = net(x) 
print(mu)
 
#可以看到,对于输入,网络可以输出隐含变量的均值和方差,这里的均值方差还没有训练
 
#下面开始训练 
reconstruction_function = nn.MSELoss(size_average=False) 
def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    MSE = reconstruction_function(recon_x, x)
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return MSE + KLD 
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
 
def to_img(x):
    '''
    定义一个函数将最后的结果转换回图片
    '''
    x = 0.5 * (x + 1.)
    x = x.clamp(0, 1)
    x = x.view(x.shape[0], 1, 28, 28)
    return x
 
for e in range(100):
    for im, _ in train_data:
        im = im.view(im.shape[0], -1)
        im = Variable(im)
        if torch.cuda.is_available():
            im = im.cuda()
        recon_im, mu, logvar = net(im)
        loss = loss_function(recon_im, im, mu, logvar) / im.shape[0] # 将 loss 平均
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
    if (e + 1) % 20 == 0:
        print('epoch: {}, Loss: {:.4f}'.format(e + 1, loss.item()))
        save = to_img(recon_im.cpu().data)
        if not os.path.exists('./vae_img'):
            os.mkdir('./vae_img')
        save_image(save, './vae_img/image_{}.png'.format(e + 1))

补充:PyTorch 深度学习快速入门——变分自动编码器

变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。

回忆一下,自动编码器有个问题,就是并不能任意生成图片,因为我们没有办法自己去构造隐藏向量,需要通过一张图片输入编码我们才知道得到的隐含向量是什么,这时我们就可以通过变分自动编码器来解决这个问题。

其实原理特别简单,只需要在编码过程给它增加一些限制,迫使其生成的隐含向量能够粗略的遵循一个标准正态分布,这就是其与一般的自动编码器最大的不同。

这样我们生成一张新图片就很简单了,我们只需要给它一个标准正态分布的随机隐含向量,这样通过解码器就能够生成我们想要的图片,而不需要给它一张原始图片先编码。

一般来讲,我们通过 encoder 得到的隐含向量并不是一个标准的正态分布,为了衡量两种分布的相似程度,我们使用 KL divergence,利用其来表示隐含向量与标准正态分布之间差异的 loss,另外一个 loss 仍然使用生成图片与原图片的均方误差来表示。

KL divergence 的公式如下

pytorch 实现变分自动编码器的操作

重参数 为了避免计算 KL divergence 中的积分,我们使用重参数的技巧,不是每次产生一个隐含向量,而是生成两个向量,一个表示均值,一个表示标准差,这里我们默认编码之后的隐含向量服从一个正态分布的之后,就可以用一个标准正态分布先乘上标准差再加上均值来合成这个正态分布,最后 loss 就是希望这个生成的正态分布能够符合一个标准正态分布,也就是希望均值为 0,方差为 1

所以最后我们可以将我们的 loss 定义为下面的函数,由均方误差和 KL divergence 求和得到一个总的 loss

def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    MSE = reconstruction_function(recon_x, x)
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return MSE + KLD

用 mnist 数据集来简单说明一下变分自动编码器

import os 
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision.datasets import MNIST
from torchvision import transforms as tfs
from torchvision.utils import save_image
 
im_tfs = tfs.Compose([
    tfs.ToTensor(),
    tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 标准化
])
 
train_set = MNIST('./mnist', transform=im_tfs)
train_data = DataLoader(train_set, batch_size=128, shuffle=True)
 
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
 
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20) # mean
        self.fc22 = nn.Linear(400, 20) # var
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
 
    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)
 
    def reparametrize(self, mu, logvar):
        std = logvar.mul(0.5).exp_()
        eps = torch.FloatTensor(std.size()).normal_()
        if torch.cuda.is_available():
            eps = Variable(eps.cuda())
        else:
            eps = Variable(eps)
        return eps.mul(std).add_(mu)
 
    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return F.tanh(self.fc4(h3))
 
    def forward(self, x):
        mu, logvar = self.encode(x) # 编码
        z = self.reparametrize(mu, logvar) # 重新参数化成正态分布
        return self.decode(z), mu, logvar # 解码,同时输出均值方差
 
net = VAE() # 实例化网络
if torch.cuda.is_available():
    net = net.cuda()
x, _ = train_set[0]
x = x.view(x.shape[0], -1)
if torch.cuda.is_available():
    x = x.cuda()
x = Variable(x)
_, mu, var = net(x) 
print(mu) 
 
Variable containing:  Columns 0 to 9  -0.0307 -0.1439 -0.0435  0.3472  0.0368 -0.0339  0.0274 -0.5608  0.0280  0.2742  Columns 10 to 19  -0.6221 -0.0894 -0.0933  0.4241  0.1611  0.3267  0.5755 -0.0237  0.2714 -0.2806 [torch.cuda.FloatTensor of size 1x20 (GPU 0)]

可以看到,对于输入,网络可以输出隐含变量的均值和方差,这里的均值方差还没有训练 下面开始训练

reconstruction_function = nn.MSELoss(size_average=False) 
def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    MSE = reconstruction_function(recon_x, x)
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return MSE + KLD 
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
 
def to_img(x):
    '''
    定义一个函数将最后的结果转换回图片
    '''
    x = 0.5 * (x + 1.)
    x = x.clamp(0, 1)
    x = x.view(x.shape[0], 1, 28, 28)
    return x
 
for e in range(100):
    for im, _ in train_data:
        im = im.view(im.shape[0], -1)
        im = Variable(im)
        if torch.cuda.is_available():
            im = im.cuda()
        recon_im, mu, logvar = net(im)
        loss = loss_function(recon_im, im, mu, logvar) / im.shape[0] # 将 loss 平均
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
    if (e + 1) % 20 == 0:
        print('epoch: {}, Loss: {:.4f}'.format(e + 1, loss.data[0]))
        save = to_img(recon_im.cpu().data)
        if not os.path.exists('./vae_img'):
            os.mkdir('./vae_img')
        save_image(save, './vae_img/image_{}.png'.format(e + 1))
  
epoch: 20, Loss: 61.5803 epoch: 40, Loss: 62.9573 epoch: 60, Loss: 63.4285 epoch: 80, Loss: 64.7138 epoch: 100, Loss: 63.3343

变分自动编码器虽然比一般的自动编码器效果要好,而且也限制了其输出的编码 (code) 的概率分布,但是它仍然是通过直接计算生成图片和原始图片的均方误差来生成 loss,这个方式并不好,生成对抗网络中,我们会讲一讲这种方式计算 loss 的局限性,然后会介绍一种新的训练办法,就是通过生成对抗的训练方式来训练网络而不是直接比较两张图片的每个像素点的均方误差

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中的__init__ 、__new__、__call__小结
Apr 25 Python
简化Python的Django框架代码的一些示例
Apr 20 Python
简单介绍Python2.x版本中的cmp()方法的使用
May 20 Python
python条件变量之生产者与消费者操作实例分析
Mar 22 Python
django 通过ajax完成邮箱用户注册、激活账号的方法
Apr 17 Python
Python OpenCV处理图像之滤镜和图像运算
Jul 10 Python
python实现批量注册网站用户的示例
Feb 22 Python
Python+OpenCV+图片旋转并用原底色填充新四角的例子
Dec 12 Python
Python搭建HTTP服务过程图解
Dec 14 Python
Python3.6 中的pyinstaller安装和使用教程
Mar 16 Python
如何使用PyCharm将代码上传到GitHub上(图文详解)
Apr 27 Python
python基本算法之实现归并排序(Merge sort)
Sep 01 Python
Pytorch数据读取之Dataset和DataLoader知识总结
May 23 #Python
Python基础之函数嵌套知识总结
May 23 #Python
利用python Pandas实现批量拆分Excel与合并Excel
May 23 #Python
Python基础之元编程知识总结
May 23 #Python
Python利用folium实现地图可视化
python爬虫之selenium库的安装及使用教程
教你利用python实现企业微信发送消息
You might like
PHP的substr_replace将指定两位置之间的字符替换为*号
2011/05/04 PHP
php创建sprite
2014/02/11 PHP
Laravel 5.5基于内置的Auth模块实现前后台登陆详解
2017/12/21 PHP
浅谈PHP封装CURL
2019/03/06 PHP
laravel5.5安装jwt-auth 生成token令牌的示例
2019/10/24 PHP
js arguments.callee的应用代码
2009/05/07 Javascript
一个js的tab切换效果代码[代码分离]
2010/04/11 Javascript
JavaScript作用域与作用域链深入解析
2013/12/06 Javascript
JavaScript统计网站访问次数的实现代码
2015/11/18 Javascript
基于JavaScript如何制作遮罩层对话框
2016/01/26 Javascript
在Html中使用Requirejs进行模块化开发实例详解
2016/04/15 Javascript
老生常谈 关于JavaScript的类的继承
2016/06/24 Javascript
Vue.js手风琴菜单组件开发实例
2017/05/16 Javascript
JS实现加载时锁定HTML页面元素的方法
2017/06/24 Javascript
基于Vue的ajax公共方法(详解)
2018/01/20 Javascript
AngularJS双向数据绑定原理之$watch、$apply和$digest的应用
2018/01/30 Javascript
通过jquery获取上传文件名称、类型和大小的实现代码
2018/04/19 jQuery
Element Badge标记的使用方法
2020/07/27 Javascript
Vue记住滚动条和实现下拉加载的完美方法
2020/07/31 Javascript
在项目vue中使用echarts的操作步骤
2020/09/07 Javascript
vue element-ul实现展开和收起功能的实例代码
2020/11/25 Vue.js
python局部赋值的规则
2013/03/07 Python
Python实现从log日志中提取ip的方法【正则提取】
2018/03/31 Python
python广度优先搜索得到两点间最短路径
2019/01/17 Python
使用python打印十行杨辉三角过程详解
2019/07/10 Python
python批量读取文件名并写入txt文件中
2020/09/05 Python
Python2比较当前图片跟图库哪个图片相似的方法示例
2019/09/28 Python
python 解决selenium 中的 .clear()方法失效问题
2020/09/01 Python
研发工程师岗位职责
2014/04/28 职场文书
辩护词格式
2015/05/22 职场文书
队名及霸气口号大全
2015/12/25 职场文书
六一儿童节致辞稿(3篇)
2019/07/11 职场文书
Vue实现下拉加载更多
2021/05/09 Vue.js
MySQL中日期型单行函数代码详解
2021/06/21 MySQL
Vue自定义铃声提示音组件的实现
2022/01/22 Vue.js
HTML中的表格元素介绍
2022/02/28 HTML / CSS