浅谈pytorch中torch.max和F.softmax函数的维度解释


Posted in Python onJune 28, 2020

在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下:

首先看看二维tensor的函数的例子:

import torch
import torch.nn.functional as F
 
input = torch.randn(3,4)
print(input)
tensor([[-0.5526, -0.0194, 2.1469, -0.2567],
    [-0.3337, -0.9229, 0.0376, -0.0801],
    [ 1.4721, 0.1181, -2.6214, 1.7721]])
 
b = F.softmax(input,dim=0) # 按列SoftMax,列和为1
print(b)
tensor([[0.1018, 0.3918, 0.8851, 0.1021],
    [0.1268, 0.1587, 0.1074, 0.1218],
    [0.7714, 0.4495, 0.0075, 0.7762]])
 
c = F.softmax(input,dim=1)  # 按行SoftMax,行和为1
print(c)
tensor([[0.0529, 0.0901, 0.7860, 0.0710],
    [0.2329, 0.1292, 0.3377, 0.3002],
    [0.3810, 0.0984, 0.0064, 0.5143]])
 
d = torch.max(input,dim=0)  # 按列取max,
print(d)
torch.return_types.max(
values=tensor([1.4721, 0.1181, 2.1469, 1.7721]),
indices=tensor([2, 2, 0, 2]))
 
e = torch.max(input,dim=1)  # 按行取max,
print(e)
torch.return_types.max(
values=tensor([2.1469, 0.0376, 1.7721]),
indices=tensor([2, 2, 3]))

下面看看三维tensor解释例子:

函数softmax输出的是所给矩阵的概率分布;

b输出的是在dim=0维上的概率分布,b[0][5][6]+b[1][5][6]+b[2][5][6]=1

a=torch.rand(3,16,20)
b=F.softmax(a,dim=0)
c=F.softmax(a,dim=1)
d=F.softmax(a,dim=2)
 
In [1]: import torch as t
In [2]: import torch.nn.functional as F
In [4]: a=t.Tensor(3,4,5)
In [5]: b=F.softmax(a,dim=0)
In [6]: c=F.softmax(a,dim=1)
In [7]: d=F.softmax(a,dim=2)
 
In [8]: a
Out[8]: 
tensor([[[-0.1581, 0.0000, 0.0000, 0.0000, -0.0344],
 
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]],
 
    [[-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]],
 
 
    [[-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]]])
 
In [9]: b
Out[9]: 
 
tensor([[[0.3064, 0.3333, 0.3410, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]],
 
    [[0.3468, 0.3333, 0.3295, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]],
 
    [[0.3468, 0.3333, 0.3295, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]]])
 
 
In [10]: b.sum()
Out[10]: tensor(20.0000)
 
In [11]: b[0][0][0]+b[1][0][0]+b[2][0][0]
Out[11]: tensor(1.0000)
 
In [12]: c.sum()
Out[12]: tensor(15.)
 
In [13]: c
Out[13]: 
tensor([[[0.2235, 0.2543, 0.2521, 0.2543, 0.2457],
 
     [0.2618, 0.2457, 0.2521, 0.2457, 0.2543],
 
     [0.2529, 0.2543, 0.2436, 0.2543, 0.2457],
 
     [0.2618, 0.2457, 0.2521, 0.2457, 0.2543]],
 
 
    [[0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543],
 
     [0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543]],
 
 
    [[0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543],
 
     [0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543]]])
 
In [14]: n=t.rand(3,4)
 
In [15]: n
Out[15]: 
 
tensor([[0.2769, 0.3475, 0.8914, 0.6845],
    [0.9251, 0.3976, 0.8690, 0.4510],
    [0.8249, 0.1157, 0.3075, 0.3799]])
 
In [16]: m=t.argmax(n,dim=0)
 
In [17]: m
Out[17]: tensor([1, 1, 0, 0])
 
In [18]: p=t.argmax(n,dim=1)
 
In [19]: p
Out[19]: tensor([2, 0, 0])
 
In [20]: d.sum()
Out[20]: tensor(12.0000)
 
In [22]: d
Out[22]: 
 
tensor([[[0.1771, 0.2075, 0.2075, 0.2075, 0.2005],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]],
 
 
    [[0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]],
 
 
    [[0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]]])
 
In [23]: d[0][0].sum()
Out[23]: tensor(1.)

补充知识:多分类问题torch.nn.Softmax的使用

为什么谈论这个问题呢?是因为我在工作的过程中遇到了语义分割预测输出特征图个数为16,也就是所谓的16分类问题。

因为每个通道的像素的值的大小代表了像素属于该通道的类的大小,为了在一张图上用不同的颜色显示出来,我不得不学习了torch.nn.Softmax的使用。

首先看一个简答的例子,倘若输出为(3, 4, 4),也就是3张4x4的特征图。

import torch
img = torch.rand((3,4,4))
print(img)

输出为:

tensor([[[0.0413, 0.8728, 0.8926, 0.0693],
     [0.4072, 0.0302, 0.9248, 0.6676],
     [0.4699, 0.9197, 0.3333, 0.4809],
     [0.3877, 0.7673, 0.6132, 0.5203]],
    [[0.4940, 0.7996, 0.5513, 0.8016],
     [0.1157, 0.8323, 0.9944, 0.2127],
     [0.3055, 0.4343, 0.8123, 0.3184],
     [0.8246, 0.6731, 0.3229, 0.1730]],
    [[0.0661, 0.1905, 0.4490, 0.7484],
     [0.4013, 0.1468, 0.2145, 0.8838],
     [0.0083, 0.5029, 0.0141, 0.8998],
     [0.8673, 0.2308, 0.8808, 0.0532]]])

我们可以看到共三张特征图,每张特征图上对应的值越大,说明属于该特征图对应类的概率越大。

import torch.nn as nn
sogtmax = nn.Softmax(dim=0)
img = sogtmax(img)
print(img)

输出为:

tensor([[[0.2780, 0.4107, 0.4251, 0.1979],
     [0.3648, 0.2297, 0.3901, 0.3477],
     [0.4035, 0.4396, 0.2993, 0.2967],
     [0.2402, 0.4008, 0.3273, 0.4285]],
    [[0.4371, 0.3817, 0.3022, 0.4117],
     [0.2726, 0.5122, 0.4182, 0.2206],
     [0.3423, 0.2706, 0.4832, 0.2522],
     [0.3718, 0.3648, 0.2449, 0.3028]],
    [[0.2849, 0.2076, 0.2728, 0.3904],
     [0.3627, 0.2581, 0.1917, 0.4317],
     [0.2543, 0.2898, 0.2175, 0.4511],
     [0.3880, 0.2344, 0.4278, 0.2686]]])

可以看到,上面的代码对每张特征图对应位置的像素值进行Softmax函数处理, 图中标红位置加和=1,同理,标蓝位置加和=1。

我们看到Softmax函数会对原特征图每个像素的值在对应维度(这里dim=0,也就是第一维)上进行计算,将其处理到0~1之间,并且大小固定不变。

print(torch.max(img,0))

输出为:

torch.return_types.max(
values=tensor([[0.4371, 0.4107, 0.4251, 0.4117],
    [0.3648, 0.5122, 0.4182, 0.4317],
    [0.4035, 0.4396, 0.4832, 0.4511],
    [0.3880, 0.4008, 0.4278, 0.4285]]),
indices=tensor([[1, 0, 0, 1],
    [0, 1, 1, 2],
    [0, 0, 1, 2],
    [2, 0, 2, 0]]))

可以看到这里3x4x4变成了1x4x4,而且对应位置上的值为像素对应每个通道上的最大值,并且indices是对应的分类。

清楚理解了上面的流程,那么我们就容易处理了。

看具体案例,这里输出output的大小为:16x416x416.

output = torch.tensor(output)
 
sm = nn.Softmax(dim=0)
output = sm(output)
 
mask = torch.max(output,0).indices.numpy()
 
# 因为要转化为RGB彩色图,所以增加一维
rgb_img = np.zeros((output.shape[1], output.shape[2], 3))
for i in range(len(mask)):
  for j in range(len(mask[0])):
    if mask[i][j] == 0:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 255
    if mask[i][j] == 1:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 0
    if mask[i][j] == 2:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 180
    if mask[i][j] == 3:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 255
    if mask[i][j] == 4:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 180
    if mask[i][j] == 5:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 0
    if mask[i][j] == 6:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 180
    if mask[i][j] == 7:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 255
    if mask[i][j] == 8:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
    if mask[i][j] == 9:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
    if mask[i][j] == 10:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 255
    if mask[i][j] == 11:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 180
    if mask[i][j] == 12:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 255
    if mask[i][j] == 13:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 180
    if mask[i][j] == 14:
      rgb_img[i][j][0] = 0
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 255
    if mask[i][j] == 15:
      rgb_img[i][j][0] = 0
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
 
cv2.imwrite('output.jpg', rgb_img)

最后保存得到的图为:

浅谈pytorch中torch.max和F.softmax函数的维度解释

以上这篇浅谈pytorch中torch.max和F.softmax函数的维度解释就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python语言技巧之三元运算符使用介绍
Mar 04 Python
python插入排序算法的实现代码
Nov 21 Python
使用pandas对矢量化数据进行替换处理的方法
Apr 11 Python
python数字图像处理实现直方图与均衡化
May 04 Python
Django框架的中的setting.py文件说明详解
Oct 15 Python
通过pykafka接收Kafka消息队列的方法
Dec 27 Python
Python实现京东秒杀功能代码
May 16 Python
python+opencv实现摄像头调用的方法
Jun 22 Python
使用Python在Windows下获取USB PID&VID的方法
Jul 02 Python
Django+zTree构建组织架构树的方法
Aug 21 Python
python与c语言的语法有哪些不一样的
Sep 13 Python
深入探讨opencv图像矫正算法实战
May 21 Python
Python turtle库的画笔控制说明
Jun 28 #Python
使用python修改文件并立即写回到原始位置操作(inplace读写)
Jun 28 #Python
python删除指定列或多列单个或多个内容实例
Jun 28 #Python
Python3实现建造者模式的示例代码
Jun 28 #Python
Python工程师必考的6个经典面试题
Jun 28 #Python
Python drop方法删除列之inplace参数实例
Jun 27 #Python
对python pandas中 inplace 参数的理解
Jun 27 #Python
You might like
PHP 5.0对象模型深度探索之类的静态成员
2008/03/27 PHP
PhpDocumentor 2安装以及生成API文档的方法
2014/05/21 PHP
php提取字符串中网站url地址的方法
2014/12/03 PHP
Symfony2获取web目录绝对路径、相对路径、网址的方法
2016/11/14 PHP
Laravel框架模板加载,分配变量及简单路由功能示例
2018/06/11 PHP
javascript hasFocus使用实例
2010/06/29 Javascript
jQuery EasyUI API 中文文档 - ComboBox组合框
2011/10/07 Javascript
使用JQuery和CSS模拟超链接的用户单击事件的实现代码
2012/05/23 Javascript
javascript限制文本框只允许输入数字(曾经与现在的方法对比)
2013/01/18 Javascript
Jquery获取复选框被选中值的简单方法
2013/07/04 Javascript
js动态往表格的td中添加图片并注册事件
2014/06/12 Javascript
JavaScript数组常用方法
2015/03/02 Javascript
JavaScript实现多个重叠层点击切换效果的方法
2015/04/24 Javascript
jQuery数据类型小结(14个)
2016/01/08 Javascript
JavaScript ES6的新特性使用新方法定义Class
2016/06/28 Javascript
js前端面试题及答案整理(一)
2016/08/26 Javascript
ASP.NET jquery ajax传递参数的实例
2016/11/02 Javascript
JS简单判断函数是否存在的方法
2017/02/13 Javascript
vue分页插件的使用方法
2019/12/25 Javascript
基于vue的tab-list类目切换商品列表组件的示例代码
2020/02/14 Javascript
原生js实现五子棋游戏
2020/05/28 Javascript
[58:46]OG vs NAVI 2019国际邀请赛小组赛 BO2 第二场 8.15
2019/08/17 DOTA
Python随机生成带特殊字符的密码
2016/03/02 Python
python3实现抓取网页资源的 N 种方法
2017/05/02 Python
Python使用Scrapy保存控制台信息到文本解析
2017/12/27 Python
Python数据结构与算法(几种排序)小结
2019/06/22 Python
详解CSS3浏览器兼容
2016/12/14 HTML / CSS
使用SVG实现提示框功能的示例代码
2020/06/05 HTML / CSS
荷兰牛仔裤网上商店:Jeans Centre
2018/04/03 全球购物
说出一些常用的类,包,接口
2014/09/22 面试题
文明礼仪演讲稿
2014/05/12 职场文书
开学典礼演讲稿
2014/05/23 职场文书
社会体育专业大学生职业生涯规划书
2014/09/17 职场文书
雷锋的故事观后感
2015/06/10 职场文书
2015迎新晚会开场白
2015/07/17 职场文书
学校体育节班级口号
2015/12/25 职场文书