TensorFlow keras卷积神经网络 添加L2正则化方式


Posted in Python onMay 22, 2020

我就废话不多说了,大家还是直接看代码吧!

model = keras.models.Sequential([
 #卷积层1
 keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)),
 #池化层1
 keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
 #卷积层2
 keras.layers.Conv2D(64,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu),
 #池化层2
 keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
 #数据整理
 keras.layers.Flatten(),
 #1024个,全连接层
 keras.layers.Dense(1024,activation=tf.nn.relu),
 #100个,全连接层
 keras.layers.Dense(100,activation=tf.nn.softmax)
 ])
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 
from tensorflow.python.keras.datasets import cifar100
from tensorflow.python import keras
import tensorflow as tf
 
class CNNMnist(object):
 
 model = keras.models.Sequential([
 #卷积层1
 keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)),
 #池化层1
 keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
 #卷积层2
 keras.layers.Conv2D(64,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu),
 #池化层2
 keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
 #数据整理
 keras.layers.Flatten(),
 #1024个,全连接层
 keras.layers.Dense(1024,activation=tf.nn.relu),
 #100个,全连接层
 keras.layers.Dense(100,activation=tf.nn.softmax)
 ])
 
 def __init__(self):
 (self.x_train,self.y_train),(self.x_test,self.y_test) = cifar100.load_data()
 
 self.x_train = self.x_train/255.0
 self.x_test = self.x_test/255.0
 
 
 def compile(self):
 CNNMnist.model.compile(optimizer=keras.optimizers.Adam(),loss=keras.losses.sparse_categorical_crossentropy,metrics=["accuracy"])
 
 def fit(self):
 CNNMnist.model.fit(self.x_train,self.y_train,epochs=1,batch_size=32)
 
 def evaluate(self):
 test_loss,test_acc = CNNMnist.model.evaluate(self.x_test,self.y_test)
 print(test_loss,test_acc)
 
if __name__ == '__main__':
 cnn = CNNMnist()
 print(CNNMnist.model.summary())
 cnn.compile()
 cnn.fit()

补充知识:初步了解TensorFlow如何实现正则化

为了避免过拟合问题,一个非常常用的方法是正则化(regularization),正则化的思想就是在损失函数中加入刻画模型复杂程度的指标。

假设用于刻画模型在训练数据上表现的损失函数为J(θ),那么在优化时不是直接优化J(θ),而是优化J(θ) + λR(w),其中R(w)刻画的是模型的复杂程度,而λ表示模型复杂损失在总损失中的比例,需要注意的是,这里的θ表示的是一个神经网络中所有的参数,它包括边上的权重w和偏置项b,但一般来说模型复杂度只由权重w决定。

常用的刻画模型复杂度的函数R(w)有两种,一种是L1正则化,计算公式是:

TensorFlow keras卷积神经网络 添加L2正则化方式

另一种是L2正则化,计算公式是:

TensorFlow keras卷积神经网络 添加L2正则化方式

TensorFlow可以优化任意形式的损失函数,所以TensorFlow自然也可以优化带正则化的损失函数。

L1正则化和L2正则化,在TensorFlow中分别以不同的函数实现它们,以下列代码为示例:

#含有L1正则化的损失函数:
loss = tf.reduce_mean(tf.square(y_ - y)) + tf.contrib.layers.l1_regularizer(λ)(w)

#含有L2正则化的损失函数:
loss = tf.reduce_mean(tf.square(y_ - y)) + tf.contrib.layers.l2_regularizer(λ)(w)

loss为定义的损失函数,它由两个部分组成,第一个部分是均方误差损失函数,它刻画了模型在训练数据上的表现,第二个部分就是正则化,它防止模型过度模拟训练数据中的随机噪音;

λ表示了正则化项的权重,w为需要计算正则化损失的参数。

TensorFlow提供了tf.contrib.layers.l1_regularizer函数和tf.contrib.layers.l2_regularizer函数用来计算L1正则化和L2正则化,通过以下代码给出使用两个函数的样例:

import tensorflow as tf
weights = tf.constant([[1.0, -2.0], [-3.0, 4.0]])
with tf.Session() as sess:
 #计算结果为5.0
 print(sess.run(tf.contrib.layers.l1_regularizer(0.5)(weights)))
 #计算结果为15 * 1/2 = 7.5,L2正则化乘以1/2可以方便求导
 print(sess.run(tf.contrib.layers.l2_regularizer(0.5)(weights)))

在简单的神经网络中,这样的方式就可以很好地计算带正则化的损失函数了,但当神经网络的参数增多之后,这样的方式首先可能导致损失函数loss的定义很长,可读性差且容易出错,更主要的是,当网络结构复杂之后定义网络结构的部分和计算损失函数的部分可能不在同一个函数中,这样通过变量这种方式计算损失函数就不方便了。

为了解决这个问题,可以使用TensorFlow中提供的集合(collection)来维护需要计算的正则化损失,以下列代码为示例给出通过集合计算一个5层神经网络带L2正则化的损失函数的计算方法:

import tensorflow as tf

#获取一层神经网络边上的权重,并将这个权重的L2正则化损失加入名称为losses的集合中
def get_weight(shape, r):
 #生成一个变量
 var = tf.Variable(tf.random_normal(shape, stddev=1, seed=1), dtype=tf.float32)
 '''add_to_collection函数将这个新生成变量的L2正则化损失项加入集合
 这个函数的第一个参数losses是集合的名字,第二个参数是要加入这个集合的内容'''
 tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(r)(var))
 return var

x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))

#定义了每一层网络中节点的个数
layer_dimension = [2, 10, 10, 10, 1]
#神经网络的层数
n_layers = len(layer_dimension)

#这个变量维护前向传播时最深层的节点,开始的时候就是输入层
cur_layer = x
#in_dimension为当前层的节点个数
in_dimension = layer_dimension[0]

#通过一个循环来生成5层全连接的神经网络结构
for i in range(1, n_layers):
 #out_dimension为下一层的节点个数
 out_dimension = layer_dimension[i]
 #生成当前层中权重的变量,并将这个变量的L2正则化损失加入losses集合
 weight = get_weight([in_dimension, out_dimension], 0.001)
 bias = tf.Variable(tf.fill([1, out_dimension], 0.1))
 #使用ReLU激活函数
 cur_layer = tf.nn.relu(tf.matmul(cur_layer, weight) + bias)
 #进入下一层之前将下一层的节点个数更新为当前层节点个数
 in_dimension = out_dimension

'''在定义神经网络前向传播的同时已经将所有的L2正则化损失加入了losses集合
这里只需要计算刻画模型在训练数据上表现的损矣函数。'''
mse_loss = tf.reduce_mean(tf.square(y_ - cur_layer))

#将均方误差损失函数加入损失集合
tf.add_to_collection('losses', mse_loss)

'''get_collection返回一个列表,这个列表包含所有这个集合中的元素
在这个样例中这些元素就是损失函数的不同部分,将它们加起来就可以得到最终的损失函数。'''
loss = tf.add_n(tf.get_collection('losses'))

以上这篇TensorFlow keras卷积神经网络 添加L2正则化方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用Python实现通过哈希算法检测图片重复的教程
Apr 02 Python
Python提取网页中超链接的方法
Sep 18 Python
python字符串str和字节数组相互转化方法
Mar 18 Python
python 迭代器和iter()函数详解及实例
Mar 21 Python
如何在sae中设置django,让sae的工作环境跟本地python环境一致
Nov 21 Python
Python常见工厂函数用法示例
Mar 21 Python
Python数据结构之图的应用示例
May 11 Python
python 实现批量xls文件转csv文件的方法
Oct 23 Python
Django项目基础配置和基本使用过程解析
Nov 25 Python
python对XML文件的操作实现代码
Mar 27 Python
Python 的 __str__ 和 __repr__ 方法对比
Sep 02 Python
Python实现机器学习算法的分类
Jun 03 Python
Django 如何使用日期时间选择器规范用户的时间输入示例代码详解
May 22 #Python
python实现猜单词游戏
May 22 #Python
Django使用rest_framework写出API
May 21 #Python
使用keras根据层名称来初始化网络
May 21 #Python
关于Keras Dense层整理
May 21 #Python
Django如何使用redis作为缓存
May 21 #Python
如何打包Python Web项目实现免安装一键启动的方法
May 21 #Python
You might like
访问编码后的中文URL返回404错误的解决方法
2014/08/20 PHP
php提交post数组参数实例分析
2015/12/17 PHP
PHP7匿名类用法分析
2016/09/26 PHP
PHP与SQL语句写一句话木马总结
2019/10/11 PHP
JS类中定义原型方法的两种实现的区别
2007/03/08 Javascript
非常漂亮的JS代码经典广告
2007/10/21 Javascript
Jquery 改变radio/checkbox选中状态,获取选中的值(示例代码)
2013/12/12 Javascript
jQuery实现鼠标经过图片变亮其他变暗效果
2015/05/08 Javascript
JavaScript实现图片轮播的方法
2015/07/31 Javascript
JavaScript 模块的循环加载实现方法
2015/12/13 Javascript
浅谈Angularjs link和compile的使用区别
2016/10/21 Javascript
详解javascript立即执行函数表达式IIFE
2017/02/13 Javascript
vue.js实现刷新当前页面的方法教程
2017/07/05 Javascript
angular4 如何在全局设置路由跳转动画的方法
2017/08/30 Javascript
jQuery 实现左右两侧菜单添加、移除功能
2018/01/02 jQuery
vue使用vue-i18n实现国际化的实现代码
2018/04/08 Javascript
小程序云开发教程如何使用云函数实现点赞功能
2019/05/18 Javascript
JAVA面试题 static关键字详解
2019/07/16 Javascript
基于vue实现简易打地鼠游戏
2020/08/21 Javascript
[07:57]2018DOTA2国际邀请赛寻真——PSG.LGD凤凰浴火
2018/08/12 DOTA
查看Python安装路径以及安装包路径小技巧
2015/04/28 Python
celery4+django2定时任务的实现代码
2018/12/23 Python
Python 实现微信防撤回功能
2019/04/29 Python
Python算法的时间复杂度和空间复杂度(实例解析)
2019/11/19 Python
在Python中利用pickle保存变量的实例
2019/12/30 Python
python3.5的包存放的具体路径
2020/08/16 Python
Belvilla德国:在线预订度假屋
2018/04/10 全球购物
日本乐天德国站:Rakuten.de
2019/05/16 全球购物
俄罗斯第一家多品牌在线奢侈品精品店:Aizel.ru
2020/09/06 全球购物
GWT的应用有哪两种部署模式
2012/12/21 面试题
给学校的建议书范文
2014/05/15 职场文书
2014年教师节讲话稿5篇
2014/09/10 职场文书
学校机关党总支领导班子整改工作方案
2014/10/26 职场文书
给老婆的保证书
2015/01/16 职场文书
师德培训心得体会2016
2016/01/09 职场文书
golang如何去除多余空白字符(含制表符)
2021/04/25 Golang