Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)


Posted in Python onJanuary 03, 2020

今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录

首先提出两个问题:

1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程

2.输入图片是多通道情况下的filters是如何操作的? 即多通道多个卷积核卷积过程

这里首先贴出官方文档:

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)[source]

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

Parameters:

in_channels (int) ? Number of channels in the input image
out_channels (int) ? Number of channels produced by the convolution
kernel_size (intortuple) ? Size of the convolving kernel
stride (intortuple,optional) ? Stride of the convolution. Default: 1
padding (intortuple,optional) ? Zero-padding added to both sides of the input. Default: 0
dilation (intortuple,optional) ? Spacing between kernel elements. Default: 1
groups (int,optional) ? Number of blocked connections from input channels to output channels. Default: 1
bias (bool,optional) ? If True, adds a learnable bias to the output. Default: True

这个文档中的公式对我来说,并不能看的清楚

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

一通道卷积核卷积过程:

比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:输出就为32个feature map

也就是, 当conv2d( in_channels = 1 , out_channels = N)

有N个filter对输入进行滤波。同时输出N个结果即feature map,每个filter滤波输出一个结果.

import torch
from torch.autograd import Variable
##单位矩阵来模拟输入
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)
print(out)
print(list(x.parameters()))

输出out的结果和conv2d 的参数如下,可以看到,conv2d是有3个filter加一个bias

# out的结果
Variable containing:
(0 ,0 ,.,.) = 
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065

(0 ,1 ,.,.) = 
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046

(0 ,2 ,.,.) = 
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
[torch.FloatTensor of size 1x3x3x3]

# conv2d的参数
[Parameter containing:
(0 ,0 ,.,.) = 
 -0.0789 -0.1932 -0.0990
 0.1571 -0.1784 -0.2334
 0.0311 -0.2595 0.2222

(1 ,0 ,.,.) = 
 -0.0703 -0.3159 -0.3295
 0.0723 0.3019 0.2649
 -0.2217 0.0680 -0.0699

(2 ,0 ,.,.) = 
 -0.0736 -0.1608 0.1905
 0.2738 0.2758 -0.2776
 -0.0246 -0.1781 -0.0279
[torch.FloatTensor of size 3x1x3x3]
, Parameter containing:
 0.3255
-0.0044
 0.0733
[torch.FloatTensor of size 3]
]

验证如下,因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程:

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print("the result of first channel in image:", f_p[0].sum()+(0.3255))

可以看到结果是和(0 ,0 ,.,.) = -0.3065 ....一样的. 说明操作是通过卷积求和的.

the result of first channel in image: -0.306573044777

多通道卷积核卷积过程:

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加得到的。 所以最后得到两个feature map, 即输出层的卷积核核个数为 feature map 的个数。

Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

在pytorch 中的展示为

conv2d( in_channels = X(x>1) , out_channels = N)

有N乘X个filter(N组filters,每组X 个)对输入进行滤波。即每次有一组里X个filter对原X个channels分别进行滤波最后相加输出一个结果,最后输出N个结果即feature map。

验证如下:

##单位矩阵来模拟输入
input=torch.ones(1,3,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)
print(list(x.parameters()))

可以看到共有4*3=12个filter 和一个1×4的bias 作用在这个(3,5,5)的单位矩阵上

## out输出的结果
Variable containing:
(0 ,0 ,.,.) = 
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390

(0 ,1 ,.,.) = 
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467

(0 ,2 ,.,.) = 
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138

(0 ,3 ,.,.) = 
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
[torch.FloatTensor of size 1x4x3x3]

## x的参数设置
[Parameter containing:
(0 ,0 ,.,.) = 
 -0.0803 0.1473 -0.0762
 0.0284 -0.0050 -0.0246
 0.1438 0.0955 -0.0500

(0 ,1 ,.,.) = 
 0.0716 0.0062 -0.1472
 0.1793 0.0543 -0.1764
 -0.1548 0.1379 0.1143

(0 ,2 ,.,.) = 
 -0.1741 -0.1790 -0.0053
 -0.0612 -0.1856 -0.0858
 -0.0553 0.1621 -0.1822

(1 ,0 ,.,.) = 
 -0.0773 -0.1385 0.1356
 0.1794 -0.0534 -0.1110
 -0.0137 -0.1744 -0.0188

(1 ,1 ,.,.) = 
 -0.0396 0.0149 0.1537
 0.0846 -0.1123 -0.0556
 -0.1047 -0.1783 -0.0630

(1 ,2 ,.,.) = 
 0.1850 0.0325 0.0332
 -0.0487 0.0018 0.1668
 0.0569 0.0267 0.0124

(2 ,0 ,.,.) = 
 0.1880 -0.0152 -0.1088
 -0.0105 0.1805 -0.0343
 -0.1676 0.1249 0.1872

(2 ,1 ,.,.) = 
 0.0299 0.0449 0.1179
 0.1280 -0.1545 0.0593
 -0.1489 0.1378 -0.1495

(2 ,2 ,.,.) = 
 -0.0922 0.1873 -0.1163
 0.0970 -0.0682 -0.1110
 0.0614 -0.1877 0.1918

(3 ,0 ,.,.) = 
 -0.1257 -0.0814 -0.1923
 0.0048 -0.0789 -0.0048
 0.0780 -0.0290 0.1287

(3 ,1 ,.,.) = 
 -0.0649 0.0773 -0.0584
 0.0092 -0.1168 -0.0923
 0.0614 0.1159 0.0134

(3 ,2 ,.,.) = 
 0.0426 -0.1055 0.1022
 -0.0810 0.0540 -0.1011
 0.0698 -0.0799 -0.0786
[torch.FloatTensor of size 4x3x3x3]
, Parameter containing:
-0.1367
-0.0410
 0.0424
 0.1353
[torch.FloatTensor of size 4]
]

因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程,结果-0.639065589142 与之前的out结果的(0 ,0 ,.,.) = -0.6390 相同, 即conv2d 是通过利用4组filters,每组filter对每个通道分别卷积相加得到结果。

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print(f_p[0].sum()+(-0.1367))

-0.639065589142

再更新

import torch
from torch.autograd import Variable
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
f_b=list(x.parameters())[1]
f_b=f_b.data.numpy()

print("output result is:", out[0][0])
print("the result of first channel in image:", f_p[0].sum()+f_b[0])

output result is: Variable containing:
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
[torch.FloatTensor of size 3x3]

the result of first channel in image: 0.657724

input=torch.ones(1,3,5,5)
input=Variable(input)
print(input.size())
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_b=list(x.parameters())[1]
f_p=f_p.data.numpy()
f_b=f_b.data.numpy()
# print(f_p[...,0])
# print(f_p[...,0].shape)
# print(f_p[...,0].sum()+f_b[0])
print("output result :",out[0][0])
print("simlatuate the result:", f_p[0].sum()+f_b[0])

torch.Size([1, 3, 5, 5])
output result : Variable containing:
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
[torch.FloatTensor of size 3x3]

simlatuate the result: -0.208715

以上这篇Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中的yield使用方法
Feb 11 Python
Flask框架模板渲染操作简单示例
Jul 31 Python
Django Python 获取请求头信息Content-Range的方法
Aug 06 Python
Python 用matplotlib画以时间日期为x轴的图像
Aug 06 Python
Django结合ajax进行页面实时更新的例子
Aug 12 Python
浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估
Oct 17 Python
python3实现绘制二维点图
Dec 04 Python
Python imutils 填充图片周边为黑色的实现
Jan 19 Python
解决jupyter notebook 前面书写后面内容消失的问题
Apr 13 Python
Python3 socket即时通讯脚本实现代码实例(threading多线程)
Jun 01 Python
python 如何设置守护进程
Oct 29 Python
python人工智能human learn绘图可创建机器学习模型
Nov 23 Python
如何基于python实现画不同品种的樱花树
Jan 03 #Python
Python基础之变量基本用法与进阶详解
Jan 03 #Python
PyTorch里面的torch.nn.Parameter()详解
Jan 03 #Python
Python实现银行账户资金交易管理系统
Jan 03 #Python
Pytorch提取模型特征向量保存至csv的例子
Jan 03 #Python
pytorch查看torch.Tensor和model是否在CUDA上的实例
Jan 03 #Python
python实现上传文件到linux指定目录的方法
Jan 03 #Python
You might like
PHP调用三种数据库的方法(1)
2006/10/09 PHP
PHP 字符串分割和比较
2009/10/06 PHP
php cli 小技巧
2013/06/03 PHP
免费手机号码归属地API查询接口和PHP使用实例分享
2014/04/10 PHP
ThinkPHP实现跨模块调用操作方法概述
2014/06/20 PHP
Linux+Nginx+MySQL下配置论坛程序Discuz的基本教程
2015/12/23 PHP
PHPUnit测试私有属性和方法功能示例
2018/06/12 PHP
javascript 树控件 比较好用
2009/06/11 Javascript
javascript中检测变量的类型的代码
2010/12/28 Javascript
jquery.form.js用法之清空form的方法
2014/03/07 Javascript
jQuery实现响应鼠标滚动的动感菜单效果
2015/09/21 Javascript
Markdown与Bootstrap相结合实现图片自适应属性
2016/05/04 Javascript
在Vue组件化中利用axios处理ajax请求的使用方法
2017/08/25 Javascript
vee-validate vue 2.0自定义表单验证的实例
2018/08/28 Javascript
浅谈在不使用ssr的情况下解决Vue单页面SEO问题(2)
2018/11/08 Javascript
vue改变对象或数组时的刷新机制的方法总结
2019/04/24 Javascript
iphone刘海屏页面适配方法
2019/05/07 Javascript
小程序server请求微信服务器超时的解决方法
2019/05/21 Javascript
Vue 自定义指令实现一键 Copy功能
2019/09/16 Javascript
javaScript 实现重复输出给定的字符串的常用方法小结
2020/02/20 Javascript
[04:44]DOTA2 2017全国高校联赛视频回顾
2017/08/21 DOTA
[01:15:15]VG VS EG Supermajor小组赛B组胜者组第一轮 BO3第二场 6.2
2018/06/03 DOTA
[48:12]Secret vs Optic Supermajor 胜者组 BO3 第三场 6.4
2018/06/05 DOTA
python构造icmp echo请求和实现网络探测器功能代码分享
2014/01/10 Python
Django读取Mysql数据并显示在前端的实例
2018/05/27 Python
python dataframe 输出结果整行显示的方法
2018/06/14 Python
对python dataframe逻辑取值的方法详解
2019/01/30 Python
Python3标准库总结
2019/02/19 Python
python使用python-pptx删除ppt某页实例
2020/02/14 Python
python 基于selectors库实现文件上传与下载
2020/12/31 Python
详解快速开发基于 HTML5 网络拓扑图应用
2018/01/08 HTML / CSS
毕业班联欢会主持词
2014/03/27 职场文书
小学生2015教师节演讲稿
2015/03/19 职场文书
公司奖励通知
2015/04/21 职场文书
房屋买卖定金协议书
2016/03/21 职场文书
Python图片处理之图片裁剪教程
2021/05/27 Python