Python实现线性判别分析(LDA)的MATLAB方式


Posted in Python onDecember 09, 2019

线性判别分析(linear discriminant analysis),LDA。也称为Fisher线性判别(FLD)是模式识别的经典算法。

(1)中心思想:将高维的样本投影到最佳鉴别矢量空间,来达到抽取分类信息和压缩特种空间维数的效果,投影后保证样本在新的子空间有最大的类间距离和最小的类内距离。也就是说在该空间中有最佳的可分离性。

(2)与PCA的不同点:PCA主要是从特征的协方差出发,来找到比较好的投影方式,最后需要保留的特征维数可以自己选择。但是LDA更多的是考虑了类别信息,即希望投影后不同类别之间数据点的距离更大,同一类别的数据点更紧凑。

Python实现线性判别分析(LDA)的MATLAB方式

从图中也可以看出,LDA的投影后就已经将不同的类别分开了。

所以说,LDA是以分类为基准的,考虑的是如何选择投影方向使得分类更好,是有监督的。但是PCA是一种无监督的降维方式,它只是单纯的降维,只考虑如何选择投影面才能使得降维以后的样本信息保留的最大。

(3)LDA的维度:LDA降维后是与类别个数直接相关的,而与数据本身的维度没有关系。如果有C个类别,LDA降维后一般会选择1-C-1维。对于很多二分类问题,LDA之后就剩下一维,然后再找到一个分类效果最好的阈值就可以进行分类了。

(4)投影的坐标系是否正交:

PCA的投影坐标系都是正交的,而LDA是根据类别的标注,主要关注的是分类能力,因此可以不去关注石否正交,而且一般都不正交。

(5)LDA步骤:

(a)计算各个类的样本均值:

Python实现线性判别分析(LDA)的MATLAB方式

这个地方需要注意的是,分别求出每个类别样本的Sbi或者Swi后,在计算总体的Sb和Sw时需要做加权平均,因为每个类别中的样本数目可能是不一样的。

(d)LDA作为一个分类的算法,我们希望类内的聚合度高,即类内散度矩阵小,而类间散度矩阵大。这样的分类效果才好。因此引入Fisher鉴别准则表达式:

Python实现线性判别分析(LDA)的MATLAB方式

(inv(Sw)Sb)的特征向量。且最优投影轴的个数d<=C-1;

(e)所以,只要计算出矩阵inv(Sw)Sb的最大特征值对应的特征向量,该特征向量就是投影方向W。

(6)计算各点在投影后的方向上的投影点:

Python实现线性判别分析(LDA)的MATLAB方式

MATLAB实现代码:

%这是训练数据集

%2.9500 6.6300 0
%2.5300 7.7900 0
%3.5700 5.6500 0
%3.1600 5.4700 0
%2.5800 4.4600 1
%2.1600 6.2200 1

%3.2700 3.5200 1

X=load('22.txt');
pos0=find(X(:,3)==0);
pos1=find(X(:,3)==1);
X1=X(pos0,1:2);
X2=X(pos1,1:2);
hold on
plot(X1(:,1),X1(:,2),'r+','markerfacecolor', [ 1, 0, 0 ]);
plot(X2(:,1),X2(:,2),'b*','markerfacecolor', [ 0, 0, 1 ]);

grid on

%输出样本的二维分布

Python实现线性判别分析(LDA)的MATLAB方式

M1 = mean(X1);
M2 = mean(X2);
M = mean([X1;X2]);
%第二步:求类内散度矩阵
p = size(X1,1);
q = size(X2,1);
a=repmat(M1,4,1);
S1=(X1-a)'*(X1-a);
b=repmat(M2,3,1);
S2=(X2-b)'*(X2-b);
Sw=(p*S1+q*S2)/(p+q);
%第三步:求类间散度矩阵
sb1=(M1-M)'*(M1-M);
sb2=(M2-M)'*(M2-M);
Sb=(p*sb1+q*sb2)/(p+q);
bb=det(Sw);
%第四步:求最大特征值和特征向量
[V,L]=eig(inv(Sw)*Sb);
[a,b]=max(max(L));

W = V(:,b);%最大特征值所对应的特征向量

%第五步:画出投影线
k=W(2)/W(1);
b=0;
x=2:6;
yy=k*x+b;

plot(x,yy);%画出投影线

Python实现线性判别分析(LDA)的MATLAB方式

%计算第一类样本在直线上的投影点
xi=[];
for i=1:p
  y0=X1(i,2);
  x0=X1(i,1);
  x1=(k*(y0-b)+x0)/(k^2+1);
  xi=[xi;x1];
end
yi=k*xi+b;
XX1=[xi yi];
%计算第二类样本在直线上的投影点
xj=[];
for i=1:q
  y0=X2(i,2);
  x0=X2(i,1);
  x1=(k*(y0-b)+x0)/(k^2+1);
  xj=[xj;x1];
end
yj=k*xj+b;
XX2=[xj yj];
% y=W'*[X1;X2]';
plot(XX1(:,1),XX1(:,2),'r+','markerfacecolor', [ 1, 0, 0 ]);

plot(XX2(:,1),XX2(:,2),'b*','markerfacecolor', [ 0, 0, 1 ]);

Python实现线性判别分析(LDA)的MATLAB方式

python 实现:

import numpy as np

import matplotlib.pyplot as plt

X=np.loadtxt("22.txt")

pos0=np.where(X[:,2]==0) 
print(pos0)
pos1=np.where(X[:,2]==1)

print(pos1)

X1=X[pos0,0:2]
X1=X1[0,:,:]
print(X1,X1.shape)
X2=X[pos1,0:2]
X2=X2[0,:,:]

print(X2,X2.shape)

Python实现线性判别分析(LDA)的MATLAB方式

#第一步,求各个类别的均值

M1=np.mean(X1,0)
M1=np.array([M1])
print(M1,M1.shape)
M2=np.mean(X2,0)
M2=np.array([M2])
print(M2)
M=np.mean(X[:,0:2],0)
M=np.array([M])
print(M)

p=np.size(X1,0)
print(p)
q=np.size(X2,0)

print(q)

#第二步,求类内散度矩阵
S1=np.dot((X1-M1).transpose(),(X1-M1))
print(S1)
S2=np.dot((X2-M2).transpose(),(X2-M2))
print(S2)
Sw=(p*S1+q*S2)/(p+q)

print(Sw)

#第三步,求类间散度矩阵
Sb1=np.dot((M1-M).transpose(),(M1-M))
print(Sb1)
Sb2=np.dot((M2-M).transpose(),(M2-M))
print(Sb2)
Sb=(p*Sb1+q*Sb2)/(p+q)

print(Sb)

#判断Sw是否可逆

bb=np.linalg.det(Sw)

print(bb)

#第四步,求最大特征值和特征向量
[V,L]=np.linalg.eig(np.dot(np.linalg.inv(Sw),Sb))
print(V,L.shape)
list1=[]
a=V
list1.extend(a)
print(list1)
b=list1.index(max(list1))
print(a[b])
W=L[:,b]

print(W,W.shape)

#根据求得的投影向量W画出投影线
k=W[1]/W[0]
b=0;
x=np.arange(2,10)
yy=k*x+b
plt.plot(x,yy)
plt.scatter(X1[:,0],X1[:,1],marker='+',color='r',s=20)
plt.scatter(X2[:,0],X2[:,1],marker='*',color='b',s=20)
plt.grid()

plt.show()

Python实现线性判别分析(LDA)的MATLAB方式

#计算第一类样本在直线上的投影点
xi=[]
yi=[]
for i in range(0,p):
  y0=X1[i,1]
  x0=X1[i,0]
  x1=(k*(y0-b)+x0)/(k**2+1)
  y1=k*x1+b
  xi.append(x1)
  yi.append(y1)
print(xi)

print(yi)

#计算第二类样本在直线上的投影点
xj=[]
yj=[]
for i in range(0,q):
  y0=X2[i,1]
  x0=X2[i,0]
  x1=(k*(y0-b)+x0)/(k**2+1)
  y1=k*x1+b
  xj.append(x1)
  yj.append(y1)
print(xj)

print(yj)

#画出投影后的点
plt.plot(x,yy)
plt.scatter(X1[:,0],X1[:,1],marker='+',color='r',s=20)
plt.scatter(X2[:,0],X2[:,1],marker='>',color='b',s=20)
plt.grid()
plt.plot(xi,yi,'r+')
plt.plot(xj,yj,'b>')

plt.show()

Python实现线性判别分析(LDA)的MATLAB方式

以上这篇Python实现线性判别分析(LDA)的MATLAB方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python对列表排序的方法实例分析
May 16 Python
python正则中最短匹配实现代码
Jan 16 Python
python+influxdb+shell编写区域网络状况表
Jul 27 Python
解决python3中cv2读取中文路径的问题
Dec 05 Python
详解python执行shell脚本创建用户及相关操作
Apr 11 Python
pyqt5 删除layout中的所有widget方法
Jun 25 Python
基于Python中的yield表达式介绍
Nov 19 Python
Python函数基本使用原理详解
Mar 19 Python
Python 如何测试文件是否存在
Jul 31 Python
详解python变量与数据类型
Aug 25 Python
python 使用Tensorflow训练BP神经网络实现鸢尾花分类
May 12 Python
python的netCDF4批量处理NC格式文件的操作方法
Mar 21 Python
在python中做正态性检验示例
Dec 09 #Python
python实现高斯判别分析算法的例子
Dec 09 #Python
Pycharm使用远程linux服务器conda/python环境在本地运行的方法(图解))
Dec 09 #Python
使用 Python 写一个简易的抽奖程序
Dec 08 #Python
布隆过滤器的概述及Python实现方法
Dec 08 #Python
Python+Redis实现布隆过滤器
Dec 08 #Python
PyCharm 2019.3发布增加了新功能一览
Dec 08 #Python
You might like
php使用百度ping服务代码实例
2014/06/19 PHP
基于GD2图形库的PHP生成图片缩略图类代码分享
2015/02/08 PHP
php实现的简易扫雷游戏实例
2015/07/09 PHP
PHP中遇到的时区问题解决方法
2015/07/23 PHP
WordPress迁移时一些常见问题的解决方法整理
2015/11/24 PHP
详细解读php的命名空间(二)
2018/02/21 PHP
PHP检查端口是否可以被绑定的方法示例
2018/08/09 PHP
js判断undefined类型示例代码
2014/02/10 Javascript
设计模式中的组合模式在JavaScript程序构建中的使用
2016/05/18 Javascript
BootStrap+Angularjs+NgDialog实现模式对话框
2016/08/24 Javascript
标准的js无缝滚动效果
2016/08/30 Javascript
BootstrapValidator超详细教程(推荐)
2016/12/07 Javascript
Angular 4根据组件名称动态创建出组件的方法教程
2017/11/01 Javascript
详解使用React全家桶搭建一个后台管理系统
2017/11/04 Javascript
元素全屏的设置与监听实例
2017/11/28 Javascript
JS构造一个html文本内容成文件流形式发送到后台
2018/07/31 Javascript
js中apply()和call()的区别与用法实例分析
2018/08/14 Javascript
python内存管理分析
2015/04/08 Python
python将类似json的数据存储到MySQL中的实例
2019/07/12 Python
在OpenCV里使用Camshift算法的实现
2019/11/22 Python
python 和c++实现旋转矩阵到欧拉角的变换方式
2019/12/04 Python
python使用正则表达式去除中文文本多余空格,保留英文之间空格方法详解
2020/02/11 Python
在Mac中PyCharm配置python Anaconda环境过程图解
2020/03/11 Python
ffmpeg+Python实现B站MP4格式音频与视频的合并示例代码
2020/10/21 Python
深入解读CSS3中transform变换模型的渲染
2016/05/27 HTML / CSS
HTML5获取当前地理位置并在百度地图上展示的实例
2020/07/10 HTML / CSS
中专生毕业自我鉴定
2013/11/01 职场文书
教师自我鉴定
2013/12/13 职场文书
学雷锋活动倡议书
2014/08/30 职场文书
行政专员岗位职责说明书
2014/09/01 职场文书
2014年远程教育工作总结
2014/12/09 职场文书
人事任命通知书
2015/04/21 职场文书
2015年初三班主任工作总结
2015/05/21 职场文书
Java 数组内置函数toArray详解
2021/06/28 Java/Android
Java数组与堆栈相关知识总结
2021/06/29 Java/Android
使用Springboot实现健身房管理系统
2021/07/01 Java/Android