Python 图像对比度增强的几种方法(小结)


Posted in Python onSeptember 25, 2019

图像处理工具——灰度直方图

灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。
例子:矩阵

Python 图像对比度增强的几种方法(小结)

图片来自网络,侵删!

Python 图像对比度增强的几种方法(小结)

上面图片的灰度直方图

Python 图像对比度增强的几种方法(小结)

python实现

#!usr/bin/env python
#-*- coding:utf-8 _*-
"""
@author:Sui yue
@describe: 灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率
@time: 2019/09/15
"""

import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt

#对于8位图,图像的灰度级范围式0~255之间的整数,通过定义函数来计算直方图
def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
 return grayHist
#主函数
if __name__=="__main__":
 #第一个参数式图片地址,你只需放上你的图片就可
 image = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 cv2.imshow("image", image)
 print("Usge:python histogram.py imageFile")
 #计算灰度直方图
 grayHist=calcGrayHist(image)
 #画出灰度直方图
 x_range=range(256)
 plt.plot(x_range,grayHist,'r',linewidth=2,c='black')
 #设置坐标轴的范围
 y_maxValue=np.max(grayHist)
 plt.axis([0,255,0,y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
 cv2.waitKeyEx(0)

结果

Python 图像对比度增强的几种方法(小结)

线性变换

假设输入图像为I,宽W、高为H,输出图像为O,图像的线性变换可以利用以下公式:

Python 图像对比度增强的几种方法(小结)

a的改变影响图像的对比度,b的改变影响图像的亮度

线性变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强,线性变换
@time: 2019/09/15 14:21:44
"""
import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
#主函数

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()

if __name__=="__main__":
 # 读图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #线性变换
 a=3
 O=float(a)*I
 #进行数据截断,大于255 的值要截断为255
 O[0>255]=255
 #数据类型转换
 O=np.round(O)
 #uint8类型
 O=O.astype(np.uint8)
 #显示原图和线性变换后的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(I)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

线性变换结果

Python 图像对比度增强的几种方法(小结)

灰度直方图

Python 图像对比度增强的几种方法(小结)

直方图正规化

假设输入图像为I,宽W、高为HIr,c)I(r,c)I(r,c)代表I的第r行第c列的灰度值,将I中出现的最小灰度级记为IminI_{min}Imin​,最大灰度级记为ImaxI_{max}Imax​,Ir,c[Imin,Imax]I(r,c)\in [I_{min},I_{max}]I(r,c)∈[Imin​,Imax​],为使输出图像O的灰度级范围为 [Omin,Omax][O_{min},O_{max}][Omin​,Omax​],Ir,c)I(r,c)I(r,c)和Or,c)O(r,c)O(r,c)做以下映射关系:

Python 图像对比度增强的几种方法(小结)

其中0r<H,0c<W\quad0\le r \lt H,0\le c \lt W0≤r<H,0≤c<W,O(r,c)O(r,c)O(r,c)代表O的第r行和第c列的灰度值。这个过程就是常称的直方图正规化。因为0I(r,c)IminImaxImin10 \le\frac{I(r,c)-I_{min}}{I_{max}-I_{min}} \le 10≤Imax​−Imin​I(r,c)−Imin​​≤1,所以O(r,c)[Omin,Omax]O(r,c) \in [O_{min},O_{max}]O(r,c)∈[Omin​,Omax​],一般令Omin=0O_{min}=0Omin​=0,Omax=255O_{max}=255Omax​=255。显然,直方图正规化使一种自动选取a和b的值的线性变换方法,其中

Python 图像对比度增强的几种方法(小结)

直方图正规化python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 直方图正规化
@time: 2019/09/18 21:17:22
"""

import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
#主函数
if __name__ == '__main__':
 #读入图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #求I的最大值,最小值
 Imax=np.max(I)
 Imin=np.min(I)
 #要输出的最小灰度级和最大灰度级
 Omax,Omin=255,0
 #计算a和b的值 ,测试出*4 能看到人脸
 a=float(Omax-Omin)/(Imax-Imin)
 b=Omin-a*Imin
 #矩阵的线性变换
 O=a*I+b
 #数据类型转换
 O=O.astype(np.uint8)
 #显示原图和直方图正规化的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

直方图正规化结果

Python 图像对比度增强的几种方法(小结)

Python 图像对比度增强的几种方法(小结)

伽马变换

假设输入图像为I,宽W、高为H,首先将其灰度值归一化到[0,1][0,1][0,1]范围,对于8位图来说,除以255即可。I(r,c)I(r,c)I(r,c)代表归一化后的第r行第c列的灰度值,为使输出图像O ,伽马变换就是令O(r,c)=I(r,c)γ,0r<H,0c<WO(r,c)=I(r,c)^\gamma,\quad0\le r \lt H,0\le c \lt WO(r,c)=I(r,c)γ,0≤r<H,0≤c<W,如下图所示:

Python 图像对比度增强的几种方法(小结)

γ=1\gamma=1γ=1时,图像不变。如果图像整体或者感兴趣区域较暗,则令0γ<10\le \gamma \lt 10≤γ<1可以增加图像对比度;相反图像整体或者感兴趣区域较亮,则令γ>1\gamma \gt 1γ>1可以降低图像对比度。

伽马变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强 伽马变换
@time: 2019/09/18 22:22:51
"""
import cv2
import numpy as np
import sys
#主函数
if __name__ == '__main__':
  I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
  #图像归一化
  fI=I/255.0
  #伽马变换
  gamma=0.3
  O=np.power(fI,gamma)
  #显示原图和伽马变换
  cv2.imshow("I",I)
  cv2.imshow("O",O)
  cv2.waitKey()
  cv2.destroyAllWindows()

伽马变换结果

Python 图像对比度增强的几种方法(小结)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中查找excel某一列的重复数据 剔除之后打印
Feb 10 Python
Tornado Web服务器多进程启动的2个方法
Aug 04 Python
Python random模块常用方法
Nov 03 Python
在Python的Django框架中创建语言文件
Jul 27 Python
python实现应用程序在右键菜单中添加打开方式功能
Jan 09 Python
深入理解Python中range和xrange的区别
Nov 26 Python
画pytorch模型图,以及参数计算的方法
Aug 17 Python
对Python获取屏幕截图的4种方法详解
Aug 27 Python
Python如何使用函数做字典的值
Nov 30 Python
Python TestSuite生成测试报告过程解析
Jul 23 Python
python 实现学生信息管理系统的示例
Nov 28 Python
python中pymysql包操作数据库方法
Apr 19 Python
pyqt5、qtdesigner安装和环境设置教程
Sep 25 #Python
python super的使用方法及实例详解
Sep 25 #Python
Pycharm+Python+PyQt5使用详解
Sep 25 #Python
利用python、tensorflow、opencv、pyqt5实现人脸实时签到系统
Sep 25 #Python
Python 3.6 中使用pdfminer解析pdf文件的实现
Sep 25 #Python
Python实现串口通信(pyserial)过程解析
Sep 25 #Python
Python根据服务获取端口号的方法
Sep 25 #Python
You might like
php模拟post行为代码总结(POST方式不是绝对安全)
2012/02/22 PHP
php 获取SWF动画截图示例代码
2014/02/10 PHP
Nginx下配置codeigniter框架方法
2015/04/07 PHP
yii2控制器Controller Ajax操作示例
2016/07/23 PHP
yii使用bootstrap分页样式的实例
2017/01/17 PHP
Thinkphp 框架扩展之驱动扩展实例分析
2020/04/27 PHP
利用location.hash实现跨域iframe自适应
2010/05/04 Javascript
理解Javascript_13_执行模型详解
2010/10/20 Javascript
JS对象转换为Jquery对象实现代码
2013/12/29 Javascript
百度地图API之本地搜索与范围搜索
2015/07/30 Javascript
JS实现自动固定顶部的悬浮菜单栏效果
2015/09/16 Javascript
JS实现适合于后台使用的动画折叠菜单效果
2015/09/21 Javascript
Express的路由详解
2015/12/10 Javascript
浅谈JavaScript中小数和大整数的精度丢失
2016/05/31 Javascript
内容滑动切换效果jquery.hwSlide.js插件封装
2016/07/07 Javascript
Bootstrap源码解读导航条(7)
2016/12/23 Javascript
详解JS中的立即执行函数
2017/02/24 Javascript
详解如何让Express支持async/await
2017/10/09 Javascript
seajs模块压缩问题与解决方法实例分析
2017/10/10 Javascript
vue-cli下的vuex的简单Demo图解(实现加1减1操作)
2018/02/26 Javascript
vue-cli 3.0 自定义vue.config.js文件,多页构建的方法
2018/09/19 Javascript
微信小程序实现3D轮播图效果(非swiper组件)
2019/09/21 Javascript
vue.js实现左边导航切换右边内容
2019/10/21 Javascript
基于js实现逐步显示文字输出代码实例
2020/04/02 Javascript
详解vue实现坐标拾取器功能示例
2020/11/18 Vue.js
一分钟学会JavaScript中的try-catch
2020/12/14 Javascript
[51:30]OG vs LGD 2018国际邀请赛淘汰赛BO3 第二场 8.26
2018/08/30 DOTA
Linux RedHat下安装Python2.7开发环境
2017/05/20 Python
细说CSS3中的选择符
2008/10/17 HTML / CSS
美国男女折扣服饰百货连锁店:Stein Mart
2017/05/02 全球购物
西部世纪.net笔试题面试题
2014/04/03 面试题
教师党员承诺书
2014/03/25 职场文书
委托证明范本
2014/11/25 职场文书
期末复习计划
2015/01/19 职场文书
用Python的绘图库(matplotlib)绘制小波能量谱
2021/04/17 Python
python爬虫之爬取笔趣阁小说
2021/04/22 Python