python+pandas+时间、日期以及时间序列处理方法


Posted in Python onJuly 10, 2018

先简单的了解下日期和时间数据类型及工具

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。

datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。

给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象

from datetime import datetime
from datetime import timedelta
now = datetime.now()
now
datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)
datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
delta = now - datetime(2017,6,27,10,10,10,10)
delta
datetime.timedelta(0, 20806, 166990)
delta.days
 0
delta.seconds
 20806
delta.microseconds
 166990

只有这三个参数了!

datetime模块中的数据类型

类型 说明
date 以公历形式存储日历日期(年、月、日)
time 将时间存储为时、分、秒、毫秒
datetime 存储日期和时间
timedelta 表示两个datetime值之间的差(日、秒、毫秒)

字符串和datetime的相互转换

1)python标准库函数

日期转换成字符串:利用str 或strftime

字符串转换成日期:datetime.strptime

stamp = datetime(2017,6,27)
str(stamp)
 '2017-06-27 00:00:00'
stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年
 '17-06-27'
#对多个时间进行解析成字符串
date = ['2017-6-26','2017-6-27']
datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]
datetime2
[datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方库dateutil.parser的时间解析函数

from dateutil.parser import parse
parse('2017-6-27')
 datetime.datetime(2017, 6, 27, 0, 0)
parse('27/6/2017',dayfirst =True)
 datetime.datetime(2017, 6, 27, 0, 0)

3)pandas处理成组日期

pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。

date
 ['2017-6-26', '2017-6-27']
import pandas as pd
pd.to_datetime(date)
 DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定义

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

pandas时间序列基础以及时间、日期处理

pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:

dates = ['2017-06-20','2017-06-21',\
  '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']
import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))
ts
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64
ts.index
 DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq=None)

pandas不同索引的时间序列之间的算术运算会自动按日期对齐

ts[::2]#从前往后每隔两个取数据
 2017-06-20 0.788811
 2017-06-22 0.009967
 2017-06-24 0.981214
 2017-06-26 -0.127258
 dtype: float64
ts[::-2]#从后往前逆序每隔两个取数据
 2017-06-27 1.919773
 2017-06-25 0.314127
 2017-06-23 -1.024626
 2017-06-21 0.372555
 dtype: float64
ts + ts[::2]#自动数据对齐
 2017-06-20 1.577621
 2017-06-21  NaN
 2017-06-22 0.019935
 2017-06-23  NaN
 2017-06-24 1.962429
 2017-06-25  NaN
 2017-06-26 -0.254516
 2017-06-27  NaN
 dtype: float64

索引为日期的Series和DataFrame数据的索引、选取以及子集构造

方法:

1).index[number_int]

2)[一个可以被解析为日期的字符串]

3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片

4)通过时间范围进行切片索引

ts
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64


ts[ts.index[2]]
 0.0099673896063391908
ts['2017-06-21']#传入可以被解析成日期的字符串
 0.37255538918121028
ts['21/06/2017']
 0.37255538918121028
ts['20170621']
 0.37255538918121028
ts['2017-06']#传入年或年月
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64


ts['2017-06-20':'2017-06-23']#时间范围进行切片
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 dtype: float64

带有重复索引的时间序列

1).index.is_unique检查索引日期是否是唯一的

2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates
 DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
   '2017-06-03'],
   dtype='datetime64[ns]', freq=None)

dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts
 2017-06-01 0
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 2017-06-03 4
 dtype: int32

dup_ts.index.is_unique
 False
dup_ts['2017-06-02']
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 dtype: int32

grouped = dup_ts.groupby(level=0).mean()
grouped
 2017-06-01 0
 2017-06-02 2
 2017-06-03 4
 dtype: int32

dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame
grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

总结

该篇博客主要内容:

1)字符串、日期的转换方法

2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等

3)以时间为索引的Series和DataFrame的索引、切片

4)带有重复时间索引时的索引,.groupby(level=0)应用

以上这篇python+pandas+时间、日期以及时间序列处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
解决windows下Sublime Text 2 运行 PyQt 不显示的方法分享
Jun 18 Python
用Python解析XML的几种常见方法的介绍
Apr 09 Python
从运行效率与开发效率比较Python和C++
Dec 14 Python
Flask核心机制之上下文源码剖析
Dec 25 Python
在python中实现同行输入/接收多个数据的示例
Jul 20 Python
使用python获取邮箱邮件的设置方法
Sep 20 Python
Python银行系统实战源码
Oct 25 Python
python 实现检验33品种数据是否是正态分布
Dec 09 Python
django框架F&Q 聚合与分组操作示例
Dec 12 Python
python 普通克里金(Kriging)法的实现
Dec 19 Python
python3使用Pillow、tesseract-ocr与pytesseract模块的图片识别的方法
Feb 26 Python
python 装饰器重要在哪
Feb 14 Python
使用Python的Dataframe取两列时间值相差一年的所有行方法
Jul 10 #Python
Python Dataframe 指定多列去重、求差集的方法
Jul 10 #Python
Python实现对文件进行单词划分并去重排序操作示例
Jul 10 #Python
python3中函数参数的四种简单用法
Jul 09 #Python
python3学习之Splash的安装与实例教程
Jul 09 #Python
Python基于sklearn库的分类算法简单应用示例
Jul 09 #Python
Python不使用int()函数把字符串转换为数字的方法
Jul 09 #Python
You might like
PHP编码转换函数 自动转换字符集支持数组转换
2012/12/16 PHP
ThinkPHP3.2框架自定义配置和加载用法示例
2018/06/14 PHP
php获取微信基础接口凭证Access_token
2018/08/23 PHP
PHP进阶学习之命名空间基本用法分析
2019/06/18 PHP
Laravel 读取 config 下的数据方法
2019/10/13 PHP
文字不间断滚动(上下左右)实例代码
2013/04/21 Javascript
IE与FireFox的JavaScript兼容问题解决办法
2013/12/31 Javascript
JavaScript实现的石头剪刀布游戏源码分享
2014/08/22 Javascript
javascript检测浏览器的缩放状态实现代码
2014/09/28 Javascript
JavaScript操作DOM元素的childNodes和children区别
2015/04/01 Javascript
javascript实现网页字符定位的方法
2015/07/14 Javascript
Highcharts学习之数据列
2016/08/03 Javascript
Javascrip实现文字跳动特效
2016/11/27 Javascript
JS正则表达式验证密码格式的集中情况总结
2017/02/23 Javascript
Vue.js实战之使用Vuex + axios发送请求详解
2017/04/04 Javascript
解决vue router使用 history 模式刷新后404问题
2017/07/19 Javascript
浅谈angularJS的$watch失效问题的解决方案
2017/08/11 Javascript
vue-scroller记录滚动位置的示例代码
2018/01/17 Javascript
官方推荐react-navigation的具体使用详解
2018/05/08 Javascript
vue模块拖拽实现示例代码
2019/03/09 Javascript
Django中的CACHE_BACKEND参数和站点级Cache设置
2015/07/23 Python
Pycharm学习教程(4) Python解释器的相关配置
2017/05/03 Python
python 列表,数组,矩阵两两转换tolist()的实例
2018/04/04 Python
使用Python AIML搭建聊天机器人的方法示例
2018/07/09 Python
简单了解django orm中介模型
2019/07/30 Python
Python 动态变量名定义与调用方法
2020/02/09 Python
python实现批量命名照片
2020/06/18 Python
基于CSS3 animation动画属性实现轮播图效果
2017/09/12 HTML / CSS
Silk Therapeutics官网:清洁、抗衰老护肤品
2020/08/12 全球购物
汉语专业应届生求职信
2013/10/01 职场文书
共产党员公开承诺践诺书
2014/05/28 职场文书
捐款活动总结
2014/08/27 职场文书
创新社会管理心得体会
2014/09/12 职场文书
2014年国庆节庆祝建国65周年比赛演讲稿
2014/09/21 职场文书
Python OpenCV 图像平移的实现示例
2021/06/04 Python
微信小程序scroll-view不能左右滑动问题的解决方法
2021/07/09 Javascript